多目标优化(MOO)旨在同时优化多个冲突的目标,并在机器学习中发现了重要的应用,例如最大程度地减少分类损失和差异,以在处理不同的人群方面以保持公平。最佳性,进一步优化一个目标至少将至少损害另一个目标,而决策者需要全面探索多个Optima(称为Pareto Front),以确定一个最终解决方案。我们解决了寻找帕累托阵线的效率。首先,使用随机多偏差下降(SMGD)从头开始寻找前部,对于大型神经网络和数据集很昂贵。我们建议基于预测器 - 校正方法来探索帕累托阵线作为一些初始Optima的歧管。其次,对于每个探索步骤,预测变量求解一个大规模的线性系统,该系统在模型参数数量中二次缩放,并且需要一个反向传播来评估求解器的二阶Hessian-vector产品。我们提出了一个只能线性缩放的高斯 - 纽顿近似,并且只需要每次迭代的一阶内产物。这还允许在大约求解线性系统时,在微小和共轭梯度方法之间进行选择。这些创新使大型网络成为可能的预测器 - 校准。关于多目标(公平和准确性)错误信息检测任务的实验表明,1)预测器 - 矫正器方法可以在更少的时间内找到比或与SMGD更好或与SMGD相似的方法; 2)提出的一阶方法不会损害二阶方法识别的帕累托前沿的质量,同时进一步缩短了运行时间。
translated by 谷歌翻译
Deep Learning optimization involves minimizing a high-dimensional loss function in the weight space which is often perceived as difficult due to its inherent difficulties such as saddle points, local minima, ill-conditioning of the Hessian and limited compute resources. In this paper, we provide a comprehensive review of 12 standard optimization methods successfully used in deep learning research and a theoretical assessment of the difficulties in numerical optimization from the optimization literature.
translated by 谷歌翻译
We propose an efficient method for approximating natural gradient descent in neural networks which we call Kronecker-factored Approximate Curvature (K-FAC). K-FAC is based on an efficiently invertible approximation of a neural network's Fisher information matrix which is neither diagonal nor low-rank, and in some cases is completely non-sparse. It is derived by approximating various large blocks of the Fisher (corresponding to entire layers) as being the Kronecker product of two much smaller matrices. While only several times more expensive to compute than the plain stochastic gradient, the updates produced by K-FAC make much more progress optimizing the objective, which results in an algorithm that can be much faster than stochastic gradient descent with momentum in practice. And unlike some previously proposed approximate natural-gradient/Newton methods which use high-quality non-diagonal curvature matrices (such as Hessian-free optimization), K-FAC works very well in highly stochastic optimization regimes. This is because the cost of storing and inverting K-FAC's approximation to the curvature matrix does not depend on the amount of data used to estimate it, which is a feature typically associated only with diagonal or low-rank approximations to the curvature matrix.
translated by 谷歌翻译
基于深度学习的方法,例如物理知识的神经网络(PINN)和DeepOnets已显示出解决PDE受约束优化(PDECO)问题的希望。但是,现有方法不足以处理对优化目标具有复杂或非线性依赖性的PDE约束。在本文中,我们提出了一个新颖的双层优化框架,以通过将目标和约束的优化解耦来解决挑战。对于内部循环优化,我们采用PINN仅解决PDE约束。对于外循环,我们通过基于隐式函数定理(IFT)使用Broyden的方法来设计一种新颖的方法,该方法对于近似高度级别而言是有效且准确的。我们进一步介绍了高度级计算的理论解释和误差分析。在多个大规模和非线性PDE约束优化问题上进行了广泛的实验表明,与强基础相比,我们的方法可实现最新的结果。
translated by 谷歌翻译
许多现代的机器学习应用程序,例如多任务学习,都需要查找最佳模型参数来权衡多个可能相互冲突的目标功能。帕累托集的概念使我们能够专注于不能严格改进的(通常是无限的)模型集。但是,它不能为选择一个或几个特殊型号返回实际用户提供可行的程序。在本文中,我们考虑\ emph {在Pareto Set(Opt-In-Pareto)中进行优化,这是找到Pareto模型,以优化Pareto集中的额外参考标准函数。此功能可以编码从用户的特定偏好,也可以代表代表整个帕累托集的一组多元化的帕累托模型来代表一组多元化的帕累托模型。不幸的是,尽管是一个非常有用的框架,但在深度学习中,尤其是对于大规模,非凸面和非线性目标而言,对选择性pareto的有效算法已经很大程度上遗失了。一种幼稚的方法是将Riemannian歧管梯度下降应用于帕累托集,该片段由于需要对Hessian矩阵的本征估计而产生高计算成本。我们提出了一种一阶算法,该算法仅使用梯度信息近似求解pareto,具有高实用效率和理论上保证的收敛属性。从经验上讲,我们证明我们的方法在各种具有挑战性的多任务相关问题方面有效地工作。
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
We explore the usage of the Levenberg-Marquardt (LM) algorithm for regression (non-linear least squares) and classification (generalized Gauss-Newton methods) tasks in neural networks. We compare the performance of the LM method with other popular first-order algorithms such as SGD and Adam, as well as other second-order algorithms such as L-BFGS , Hessian-Free and KFAC. We further speed up the LM method by using adaptive momentum, learning rate line search, and uphill step acceptance.
translated by 谷歌翻译
预处理一直是优化和机器学习方面的主食技术。它通常会减少其应用于矩阵的条件数,从而加快优化算法的收敛性。尽管实践中有许多流行的预处理技术,但大多数人缺乏降低病数的理论保证。在本文中,我们研究了最佳对角线预处理的问题,以分别或同时分别或同时缩放其行或列来实现任何全级矩阵的条件数量的最大降低。我们首先将问题重新将问题重新制定为一个准凸出问题,并提供了一种基线一分配算法,该算法在实践中易于实现,其中每次迭代都包含SDP可行性问题。然后,我们建议使用$ o(\ log(\ frac {1} {\ epsilon})))$迭代复杂度提出多项式时间潜在的降低算法,其中每个迭代均由基于Nesterov-todd方向的牛顿更新组成。我们的算法基于该问题的表述,该问题是von Neumann最佳生长问题的广义版本。接下来,我们专注于单方面的最佳对角线预处理问题,并证明它们可以作为标准双SDP问题配方,我们应用了有效的定制求解器并研究我们最佳的对角线预处理的经验性能。我们在大型矩阵上进行的广泛实验表明,与基于启发式的预处理相比,最佳对角线预处理在减少条件数方面的实际吸引力。
translated by 谷歌翻译
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.
translated by 谷歌翻译
Two-level stochastic optimization formulations have become instrumental in a number of machine learning contexts such as continual learning, neural architecture search, adversarial learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems become challenging in optimization or learning scenarios where the number of variables is high or there are constraints. In this paper, we introduce a bilevel stochastic gradient method for bilevel problems with lower-level constraints. We also present a comprehensive convergence theory that covers all inexact calculations of the adjoint gradient (also called hypergradient) and addresses both the lower-level unconstrained and constrained cases. To promote the use of bilevel optimization in large-scale learning, we introduce a practical bilevel stochastic gradient method (BSG-1) that does not require second-order derivatives and, in the lower-level unconstrained case, dismisses any system solves and matrix-vector products.
translated by 谷歌翻译
培训深度神经网络消耗了许多计算中心的计算资源份额。通常,采用蛮力的方法来获得高参数值。我们的目标是(1)通过启用对大型神经网络的二阶优化方法来增强此功能,以及(2)对特定任务进行性能优化器进行调查,以建议用户最适合他们的问题。我们介绍了一种新颖的二阶优化方法,该方法仅需要Hessian对向量的影响,并避免明确设置大型网络的Hessian的巨大成本。我们将提出的二阶方法与两个最先进的优化器进行了比较,这些方法在五个代表性的神经网络问题上进行了比较,包括回归和来自计算机视觉或变异自动编码器的非常深的网络。对于最大的设置,我们将优化器与HOROVOD有效平行,并将其应用于8 GPU NVIDIA P100(DGX-1)机器。
translated by 谷歌翻译
监督主体组件分析(SPCA)的方法旨在将标签信息纳入主成分分析(PCA),以便提取的功能对于预测感兴趣的任务更有用。SPCA的先前工作主要集中在优化预测误差上,并忽略了提取功能解释的最大化方差的价值。我们为SPCA提出了一种新的方法,该方法共同解决了这两个目标,并从经验上证明我们的方法主导了现有方法,即在预测误差和变异方面都超越了它们的表现。我们的方法可容纳任意监督的学习损失,并通过统计重新制定提供了广义线性模型的新型低级扩展。
translated by 谷歌翻译
我们研究无限制的黎曼优化的免投影方法。特别是,我们提出了黎曼弗兰克 - 沃尔夫(RFW)方法。我们将RFW的非渐近收敛率分析为最佳(高音)凸起问题,以及非凸起目标的临界点。我们还提出了一种实用的设置,其中RFW可以获得线性收敛速度。作为一个具体的例子,我们将RFW专用于正定矩阵的歧管,并将其应用于两个任务:(i)计算矩阵几何平均值(riemannian质心); (ii)计算Bures-Wasserstein重心。这两个任务都涉及大量凸间间隔约束,为此,我们表明RFW要求的Riemannian“线性”Oracle承认了闭合形式的解决方案;该结果可能是独立的兴趣。我们进一步专门从事RFW到特殊正交组,并表明这里也可以以封闭形式解决riemannian“线性”甲骨文。在这里,我们描述了数据矩阵同步的应用程序(促使问题)。我们补充了我们的理论结果,并对RFW对最先进的riemananian优化方法进行了实证比较,并观察到RFW竞争性地对计算黎曼心质的任务进行竞争性。
translated by 谷歌翻译
我们介绍了一种牛顿型方法,可以从任何初始化和带有Lipschitz Hessians的任意凸面目标收敛。通过将立方规范化与某种自适应levenberg - Marquardt罚款合并来实现这一目标。特别地,我们表明由$ x ^ {k + 1} = x ^ k - \ bigl(\ nabla ^ 2 f(x ^ k)+ \ sqrt {h \ | \ nabla f(x ^ k)给出的迭代)\ |} \ mathbf {i} \ bigr)^ { - 1} \ nabla f(x ^ k)$,其中$ h> 0 $是一个常数,用$ \ mathcal {o}全球收敛(\ frac{1} {k ^ 2})$率。我们的方法是牛顿方法的第一个变体,具有廉价迭代和可怕的全球融合。此外,我们证明当目的强烈凸起时,本地我们的方法会收敛超连续。为了提高方法的性能,我们提供了一种不需要超参数的线路搜索程序,并且可提供高效。
translated by 谷歌翻译
潜在因子(LF)模型可有效地通过低级矩阵近似来表示高维和稀疏(HID)数据。Hessian无(HF)优化是利用LF模型目标函数的二阶信息的有效方法,并已用于优化二阶LF(SLF)模型。但是,SLF模型的低级表示能力在很大程度上取决于其多个超参数。确定这些超参数是耗时的,它在很大程度上降低了SLF模型的实用性。为了解决这个问题,在这项工作中提出了实用的SLF(PSLF)模型。它通过分布式粒子群优化器(DPSO)实现了超参数自加载,该粒子群(DPSO)无梯度且并行化。对真实HID数据集的实验表明,PSLF模型比在数据表示能力中的最先进模型具有竞争优势。
translated by 谷歌翻译
我们引入了一种降低尺寸的二阶方法(DRSOM),用于凸和非凸的不受约束优化。在类似信任区域的框架下,我们的方法保留了二阶方法的收敛性,同时仅在两个方向上使用Hessian-Vector产品。此外,计算开销仍然与一阶相当,例如梯度下降方法。我们证明该方法的复杂性为$ O(\ epsilon^{ - 3/2})$,以满足子空间中的一阶和二阶条件。DRSOM的适用性和性能通过逻辑回归,$ L_2-L_P $最小化,传感器网络定位和神经网络培训的各种计算实验展示。对于神经网络,我们的初步实施似乎在训练准确性和迭代复杂性方面与包括SGD和ADAM在内的最先进的一阶方法获得了计算优势。
translated by 谷歌翻译
我们提出了一种新的基于同型的条件梯度方法,用于解决大量简单圆锥约束的凸优化问题。该模板的实例自然出现在半决赛编程问题中,这是组合优化问题的凸松弛。我们的方法是一种双环算法,其中通过自我符合屏障处理圆锥约束,并且内环采用条件梯度算法来近似分析中心路径,而外圈则更新了对时间溶液上的精度。和同喻参数。当面对最先进的SDP求解器时,我们的理论迭代复杂性具有竞争力,具有廉价的无投影子例程的决定性优势。提供了初步数值实验,以说明该方法的实际性能。
translated by 谷歌翻译
影响功能有效地估计了删除单个训练数据点对模型学习参数的影响。尽管影响估计值与线性模型的剩余重新进行了良好的重新对齐,但最近的作品表明,在神经网络中,这种比对通常很差。在这项工作中,我们通过将其分解为五个单独的术语来研究导致这种差异的特定因素。我们研究每个术语对各种架构和数据集的贡献,以及它们如何随网络宽度和培训时间等因素而变化。尽管实际影响函数估计值可能是非线性网络中保留对方的重新培训的差异,但我们表明它们通常是对不同对象的良好近似值,我们称其为近端Bregman响应函数(PBRF)。由于PBRF仍然可以用来回答许多激励影响功能的问题,例如识别有影响力或标记的示例,因此我们的结果表明,影响功能估计的当前算法比以前的错误分析所暗示的更有用的结果。
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
Riemannian优化是解决优化问题的原则框架,其中所需的最佳被限制为光滑的歧管$ \ Mathcal {M} $。在此框架中设计的算法通常需要对歧管的几何描述,该描述通常包括切线空间,缩回和成本函数的梯度。但是,在许多情况下,由于缺乏信息或棘手的性能,只能访问这些元素的子集(或根本没有)。在本文中,我们提出了一种新颖的方法,可以在这种情况下执行近似Riemannian优化,其中约束歧管是$ \ r^{d} $的子手机。至少,我们的方法仅需要一组无噪用的成本函数$(\ x_ {i},y_ {i})\ in {\ mathcal {m}} \ times \ times \ times \ times \ times \ mathbb {r} $和内在的歧管$ \ MATHCAL {M} $的维度。使用样品,并利用歧管-MLS框架(Sober和Levin 2020),我们构建了缺少的组件的近似值,这些组件娱乐可证明的保证并分析其计算成本。如果某些组件通过分析给出(例如,如果成本函数及其梯度明确给出,或者可以计算切线空间),则可以轻松地适应该算法以使用准确的表达式而不是近似值。我们使用我们的方法分析了基于Riemannian梯度的方法的全球收敛性,并从经验上证明了该方法的强度,以及基于类似原理的共轭梯度类型方法。
translated by 谷歌翻译