考虑两个决策任务$ a $和$ b $,每个都希望计算给定\ textit {query} $ x $的有效\ textit {dekistion} $ y $,{我们可以解决任务$ b $通过使用$ a $的查询决定对$(x,y)$,而不知道潜在的决策模型吗?}此类问题,称为\ textit {用任务迁移的倒数决策},很感兴趣现实世界应用的随机性通常会阻止代理完全了解基础系统。在本文中,我们引入了正式配方的新问题,并提出了一个通用框架,用于解决社会传染管理中的决策任务。在理论方面,我们提出了一个概括分析,以证明我们的框架学习绩效。在经验研究中,我们进行理智检查,并将提出的方法与其他可能的基于学习的方法和基于图的方法进行比较。我们已经获得了有希望的实验结果,首次确认可以通过使用与另一个相关的解决方案来解决一项决策任务。
translated by 谷歌翻译
Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.
translated by 谷歌翻译
Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here. The two conference papers upon which this article is based (KDD 2003 and ICALP 2005) provide the first provable approximation guarantees for efficient algorithms. Using an The present article is an expanded version of two conference papers [51,52], which appeared in KDD 2003 and ICALP 2005, respectively.
translated by 谷歌翻译
在影响最大化(IM)的现实世界应用中,网络结构通常是未知的。因此,我们可以通过仅探索基础网络的一部分来确定最有影响力的种子节点,但对于节点查询的预算很小。由于收集节点元数据比通过查询节点调查节点之间的关系更具成本效益,我们提出了IM-Meta,这是一种端到端的解决方案,这是通过从查询和节点中检索信息的网络中IM的端到端解决方案元数据。但是,由于元数据的嘈杂性质和连通性推断的不确定性,使用这种元数据来帮助IM过程并非没有风险。为了应对这些挑战,我们制定了一个新的IM问题,旨在找到种子节点和查询节点。在IM-META中,我们开发了一种有效的方法,该方法可以迭代执行三个步骤:1)我们通过暹罗神经网络模型学习了收集的元数据和边缘之间的关系,2)我们选择了许多推断的自信边缘来构建增强的图形, 3)我们通过使用我们的拓扑感知的排名策略来最大程度地提高推断影响扩展,以确定查询的下一个节点。通过查询仅5%的节点,IM-META达到了上限性能的93%。
translated by 谷歌翻译
预测+优化是一个常见的真实范式,在那里我们必须在解决优化问题之前预测问题参数。然而,培训预测模型的标准通常与下游优化问题的目标不一致。最近,已经提出了集中的预测方法,例如Spo +和直接优化,以填补这种差距。但是,它们不能直接处理许多真实目标所需的$最大$算子的软限制。本文提出了一种用于现实世界线性和半定义负二次编程问题的新型分析微弱的代理目标框架,具有软线和非负面的硬度约束。该框架给出了约束乘法器上的理论界限,并导出了关于预测参数的闭合形式解决方案,从而导出问题中的任何变量的梯度。我们在使用软限制扩展的三个应用程序中评估我们的方法:合成线性规划,产品组合优化和资源供应,表明我们的方法优于传统的双阶段方法和其他集中决定的方法。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
尽管图形神经网络(GNNS)的巨大成功应用,但对其泛化能力的理论认识,特别是对于数据不是独立且相同分布的节点级任务(IID),稀疏。概括性绩效的理论调查有利于了解GNN模型的基本问题(如公平性)和设计更好的学习方法。在本文中,我们在非IID半监督学习设置下为GNN提供了一种新的PAC-Bayesian分析。此外,我们分析了未标记节点的不同子组上的泛化性能,这使我们能够通过理论观点进一步研究GNN的准确性 - (DIS)奇偶校准风格(UN)公平。在合理的假设下,我们证明了测试子组和训练集之间的距离可以是影响该子组上GNN性能的关键因素,这调用了对公平学习的培训节点选择。多个GNN模型和数据集的实验支持我们的理论结果。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译
将离散域上的功能集成到神经网络中是开发其推理离散对象的能力的关键。但是,离散域是(1)自然不适合基于梯度的优化,并且(2)与依赖于高维矢量空间中表示形式的深度学习体系结构不相容。在这项工作中,我们解决了设置功能的两个困难,这些功能捕获了许多重要的离散问题。首先,我们开发了将设置功能扩展到低维连续域的框架,在该域中,许多扩展是自然定义的。我们的框架包含许多众所周知的扩展,作为特殊情况。其次,为避免不良的低维神经网络瓶颈,我们将低维扩展转换为高维空间中的表示形式,从半际计划进行组合优化的成功中获得了灵感。从经验上讲,我们观察到扩展对无监督的神经组合优化的好处,特别是具有高维其表示。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
多类神经网络是现代无监督的领域适应性中的常见工具,但是在适应性文献中缺乏针对其非均匀样品复杂性的适当理论描述。为了填补这一空白,我们为多类学习者提出了第一个Pac-Bayesian适应范围。我们还提出了我们考虑的多类分布差异的第一个近似技术,从而促进了界限的实际使用。对于依赖Gibbs预测因子的分歧,我们提出了其他PAC-湾适应界限,以消除对蒙特卡洛效率低下的需求。从经验上讲,我们测试了我们提出的近似技术的功效以及一些新型的设计概念,我们在范围中包括。最后,我们应用界限来分析使用神经网络的常见适应算法。
translated by 谷歌翻译
我们研究了社交网络中的在线影响最大化(OIM)问题,其中在多个回合中,学习者反复选择种子节点以产生级联,观察级联反馈,并逐渐学习产生最大级联的最佳种子。我们专注于本文的两个主要挑战。首先,我们使用节点级反馈而不是边缘级反馈。边缘级别反馈显示通过级联中通过信息的所有边,其中节点级反馈仅显示使用时间戳的激活节点。节点级反馈可以说是更逼真的,因为在实践中,观察到谁受到影响,而且很难观察来自哪个关系(边缘)的影响。其次,我们使用标准离线Oracle而不是脱机对 - Oracle。为了计算下一轮的良好种子集,离线对 - Oracle同时找到最佳种子集和置信区内的最佳参数,并且由于OIM问题的组合核心,这种Oracle难以计算。因此,我们专注于如何使用标准离线影响最大化Oracle,它找到了将边缘参数作为输入的最佳种子集。在本文中,我们解决了这两个最受欢迎的扩散模型,独立级联(IC)和线性阈值(LT)模型的这些挑战。对于IC模型,过去的研究只实现了边缘级反馈,而我们介绍了第一个$ \ widetilde {o}(\ sqrt {t})$ - 遗憾的节点级反馈算法。此外,算法仅调用标准离线oracles。对于LT模型,最近的一项研究仅提供了一个符合第一个挑战的OIM解决方案,但仍需要一对甲骨文。在本文中,我们应用类似于IC模型的类似技术,以用标准的Oracle替换一对Oracle,同时维持$ \ widetilde {o}(\ sqrt {t})$ - 后悔。
translated by 谷歌翻译
修剪是压缩深神经网络(DNNS)的主要方法之一。最近,将核(可证明的数据汇总)用于修剪DNN,并增加了理论保证在压缩率和近似误差之间的权衡方面的优势。但是,该域中的核心是数据依赖性的,要么是在模型的权重和输入的限制性假设下生成的。在实际情况下,这种假设很少得到满足,从而限制了核心的适用性。为此,我们建议一个新颖而健壮的框架,用于计算模型权重的轻度假设,而没有对训练数据的任何假设。这个想法是计算每个层中每个神经元相对于以下层的输出的重要性。这是通过l \“ {o} wner椭圆形和caratheodory定理的组合来实现的。我们的方法同时依赖数据独立,适用于各种网络和数据集(由于简化的假设),以及在理论上支持的。方法的表现优于基于核心的现有神经修剪方法在广泛的网络和数据集上。例如,我们的方法在Imagenet上获得了$ 62 \%$的压缩率,ImageNet上的RESNET50的准确性下降了$ 1.09 \%$。
translated by 谷歌翻译
对对抗性示例强大的学习分类器已经获得了最近的关注。标准强大学习框架的主要缺点是人为强大的RADIUS $ R $,适用于所有输入。这忽略了数据可能是高度异构的事实,在这种情况下,它是合理的,在某些数据区域中,鲁棒性区域应该更大,并且在其他区域中更小。在本文中,我们通过提出名为邻域最佳分类器的新限制分类器来解决此限制,该分类通过使用最接近的支持点的标签扩展其支持之外的贝叶斯最佳分类器。然后,我们认为该分类器可能会使其稳健性区域的大小最大化,但受到等于贝叶斯的准确性的约束。然后,我们存在足够的条件,该条件下可以表示为重量函数的一般非参数方法会聚在此限制,并且显示最近的邻居和内核分类器在某些条件下满足它们。
translated by 谷歌翻译
我们研究了一类最能列举\ emph {银行贷款}问题的分类问题,贷方决定是否签发贷款。贷款人只会观察客户是否会偿还贷款,如果贷款开始,因此建模的决定会影响贷方可供未来决定提供的数据。因此,贷方的算法可以通过自我实现模型来“陷入困境”。此模型永远不会纠正其假底片,因为它永远不会看到拒绝数据的真实标签,从而累积无限遗憾。在线性模型的情况下,可以通过将乐观直接添加到模型预测中来解决这个问题。但是,几乎没有使用深神经网络延伸到函数近似情况的方法。我们呈现伪标签乐观(PLOT),概念上和计算的简单方法,适用于DNN的此设置。 \ plot {}为当前模型决定的决策点的乐观标签添加了乐观的标签,迄今为止列出了所有数据的模型(包括这些点以及它们的乐观标签),最后使用\ emph {乐观}决策模型。 \ plot {}在一组三个具有挑战性的基准问题上实现了竞争性能,需要最小的HyperParameter调整。我们还显示\绘图{}满足LipsChitz和Logistic均值标签模型的对数遗憾保证,并在数据的可分离状态下。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
In offline reinforcement learning (RL), a learner leverages prior logged data to learn a good policy without interacting with the environment. A major challenge in applying such methods in practice is the lack of both theoretically principled and practical tools for model selection and evaluation. To address this, we study the problem of model selection in offline RL with value function approximation. The learner is given a nested sequence of model classes to minimize squared Bellman error and must select among these to achieve a balance between approximation and estimation error of the classes. We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal oracle inequalities up to logarithmic factors. The algorithm, ModBE, takes as input a collection of candidate model classes and a generic base offline RL algorithm. By successively eliminating model classes using a novel one-sided generalization test, ModBE returns a policy with regret scaling with the complexity of the minimally complete model class. In addition to its theoretical guarantees, it is conceptually simple and computationally efficient, amounting to solving a series of square loss regression problems and then comparing relative square loss between classes. We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.
translated by 谷歌翻译
我们在固定的误差率$ \ delta $(固定信道TOP-M识别)下最大的手段识别M武器的问题,用于错过的线性匪盗模型。这个问题是由实际应用的动机,特别是在医学和推荐系统中,由于它们的简单性和有效算法的存在,线性模型很受欢迎,但是数据不可避免地偏离线性。在这项工作中,我们首先在普通Top-M识别问题的任何$ \ delta $ -correct算法的样本复杂性上得出了一个易行的下限。我们表明,知道从线性度偏差的偏差是利用问题的结构所必需的。然后,我们描述了该设置的第一个算法,这既实际,也适应了误操作。我们从其样本复杂度推出了一个上限,证实了这种适应性,与$ \ delta $ $ \ lightarrow $ 0匹配。最后,我们在合成和现实世界数据上评估了我们的算法,表现出尊重的竞争性能到现有的基准。
translated by 谷歌翻译
We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
translated by 谷歌翻译