An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
translated by 谷歌翻译
本文提出了一种基于对不平衡数据集的图形的新的RWO采样(随机步行过度采样)。在该方法中,引入了基于采样的下采样和过采样方法的两种方案,以使接近信息保持对噪声和异常值的鲁棒。在构建少数群体类上的第一个图形之后,RWO取样将在选定的样本上实现,其余部分保持不变。第二图是为多数类构造的,除去低密度区域(异常值)中的样品被移除。最后,在所提出的方法中,选择高密度区域中的多数类别的样品,并消除其余部分。此外,利用RWO取样,虽然未提高异常值,但虽然少数群体类的边界增加。测试该方法,并将评估措施的数量与先前的九个连续属性数据集进行比较,具有不同的过采集率和一个数据集,用于诊断Covid-19疾病。实验结果表明了所提出的不平衡数据分类方法的高效率和灵活性
translated by 谷歌翻译
从不平衡数据中学习是一项具有挑战性的任务。在进行不平衡数据训练时,标准分类算法的性能往往差。需要通过修改数据分布或重新设计基础分类算法以实现理想的性能来采用一些特殊的策略。现实世界数据集中不平衡的流行率导致为班级不平衡问题创造了多种策略。但是,并非所有策略在不同的失衡情况下都有用或提供良好的性能。处理不平衡的数据有许多方法,但是尚未进行此类技术的功效或这些技术之间的实验比较。在这项研究中,我们对26种流行抽样技术进行了全面分析,以了解它们在处理不平衡数据方面的有效性。在50个数据集上进行了严格的实验,具有不同程度的不平衡,以彻底研究这些技术的性能。已经提出了对技术的优势和局限性的详细讨论,以及如何克服此类局限性。我们确定了影响采样策略的一些关键因素,并提供有关如何为特定应用选择合适的采样技术的建议。
translated by 谷歌翻译
从课堂上学习不平衡数据集对许多机器学习算法带来了挑战。许多现实世界域通过定义,通过拥有多数阶级的多数阶级,自然具有比其少数级别更多的阶级(例如,真正的银行交易比欺诈性更频繁)。已经提出了许多方法来解决类别不平衡问题,其中最受欢迎的过采样技术(例如Smote)。这些方法在少数群体类中生成合成实例,以平衡数据集,执行提高预测机器学习(ML)模型的性能的数据增强。在本文中,我们推进了一种新的数据增强方法(改编自解释的AI),它在少数类中生成合成,反事实情况。与其他过采样技术不同,该方法使用实际特征值,而不是实例之间的内插值,自适应地将存在于数据集的实例。报告了使用四种不同分类器和25个数据集的几个实验,这表明该反事实增强方法(CFA)在少数类中生成有用的合成数据点。实验还表明,CFA与许多其他过采样方法具有竞争力,其中许多过采样方法是Smote的变种。讨论了CFAS性能的基础,以及在未来测试中可能更好或更糟的情况下的条件。
translated by 谷歌翻译
Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been used increasingly in machine learning and data mining research. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
translated by 谷歌翻译
在过去的二十年中,已经采用了过采样来克服从不平衡数据集中学习的挑战。文献中提出了许多解决这一挑战的方法。另一方面,过采样是一个问题。也就是说,在解决现实世界问题时,经过虚拟数据训练的模型可能会出色地失败。过采样方法的根本困难是,鉴于现实生活中的人群,合成的样本可能并不真正属于少数群体。结果,在假装代表少数群体的同时,在这些样本上训练分类器可能会导致在现实世界中使用该模型时的预测。我们在本文中分析了大量的过采样方法,并根据隐藏了许多多数示例,设计了一种新的过采样评估系统,并将其与通过过采样过程产生的示例进行了比较。根据我们的评估系统,我们根据它们错误生成的示例进行比较对所有这些方法进行了排名。我们使用70多种超采样方法和三种不平衡现实世界数据集的实验表明,所有研究的过采样方法都会生成最有可能是多数人的少数样本。给定数据和方法,我们认为以目前的形式和方法对从类不平衡数据学习不可靠,应在现实世界中避免。
translated by 谷歌翻译
类不平衡是分类任务中经常发生的情况。从不平衡数据中学习提出了一个重大挑战,这在该领域引起了很多研究。使用采样技术进行数据预处理是处理数据中存在的不平衡的标准方法。由于标准分类算法在不平衡数据上的性能不佳,因此在培训之前,数据集需要足够平衡。这可以通过过度采样少数族裔级别或对多数级别的采样来实现。在这项研究中,已经提出了一种新型的混合采样算法。为了克服采样技术的局限性,同时确保保留采样数据集的质量,已经开发了一个复杂的框架来正确结合三种不同的采样技术。首先应用邻里清洁规则以减少失衡。然后从策略上与SMOTE算法策略性地采样,以在数据集中获得最佳平衡。该提出的混合方法学称为“ smote-rus-nc”,已与其他最先进的采样技术进行了比较。该策略进一步合并到集合学习框架中,以获得更健壮的分类算法,称为“ SRN-BRF”。对26个不平衡数据集进行了严格的实验,并具有不同程度的失衡。在几乎所有数据集中,提出的两种算法在许多情况下都超过了现有的采样策略,其差额很大。尤其是在流行抽样技术完全失败的高度不平衡数据集中,他们实现了无与伦比的性能。获得的优越结果证明了所提出的模型的功效及其在不平衡域中具有强大采样算法的潜力。
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
机器学习(ML)应用程序的数据量不断增长。不仅是观察的数量,特别是测量变量的数量(特征)增加了持续的数字化。选择最适合预测建模的功能是ML在商业和研究中取得成功的重要杠杆。特征选择方法(FSM)独立于某种ML算法 - 所谓的过滤方法 - 已毫无意义地建议,但研究人员和定量建模的指导很少,以选择典型ML问题的适当方法。本次审查在特征选择基准上综合了大量文献,并评估了58种方法在广泛使用的R环境中的性能。对于具体的指导,我们考虑了四种典型的数据集方案,这些情况挑战ML模型(嘈杂,冗余,不平衡数据和具有比观察特征更多的案例)。绘制早期基准的经验,该基准测试较少的FSMS,我们根据四个标准进行比较方法的性能(预测性能,所选的相关功能数,功能集和运行时的稳定性)。我们发现依赖于随机森林方法的方法,双输入对称相关滤波器(浪费)和联合杂质滤波器(Jim)是给定的数据集方案的良好性候选方法。
translated by 谷歌翻译
Learning classifiers using skewed or imbalanced datasets can occasionally lead to classification issues; this is a serious issue. In some cases, one class contains the majority of examples while the other, which is frequently the more important class, is nevertheless represented by a smaller proportion of examples. Using this kind of data could make many carefully designed machine-learning systems ineffective. High training fidelity was a term used to describe biases vs. all other instances of the class. The best approach to all possible remedies to this issue is typically to gain from the minority class. The article examines the most widely used methods for addressing the problem of learning with a class imbalance, including data-level, algorithm-level, hybrid, cost-sensitive learning, and deep learning, etc. including their advantages and limitations. The efficiency and performance of the classifier are assessed using a myriad of evaluation metrics.
translated by 谷歌翻译
由于机器学习和数据挖掘领域的不平衡数据集的分类问题,但学习的不平衡学习是重要的并且具有挑战性。提出采样方法来解决这个问题,而基于群集的过采样方法表现出很大的潜力,因为它们的目标是同时解决课堂和级别的不平衡问题。但是,所有现有的聚类方法都基于一次性方法。由于缺乏先验知识,通常存在的群集数量不当设置,这导致集群性能不佳。此外,现有方法可能会产生嘈杂的情况。为了解决这些问题,本文提出了一种基于模糊C-MATION(MLFCM)的基于深度外观信封网络的不平衡学习算法,以及基于最大均值(MINMD)的最小中间层间差异机制。在没有先前知识的情况下,该算法可以使用深度实例包络网络来保证高质量的平衡实例。在实验部分中,三十三个流行的公共数据集用于验证,并且超过十个代表性算法用于比较。实验结果表明,该方法显着优于其他流行的方法。
translated by 谷歌翻译
不平衡的数据(ID)是阻止机器学习(ML)模型以实现令人满意的结果的问题。 ID是一种情况,即属于一个类别的样本的数量超过另一个类别的情况,这使此类模型学习过程偏向多数类。近年来,为了解决这个问题,已经提出了几种解决方案,该解决方案选择合成为少数族裔类生成新数据,或者减少平衡数据的多数类的数量。因此,在本文中,我们研究了基于深神经网络(DNN)和卷积神经网络(CNN)的方法的有效性,并与各种众所周知的不平衡数据解决方案混合,这意味着过采样和降采样。为了评估我们的方法,我们使用了龙骨,乳腺癌和Z-Alizadeh Sani数据集。为了获得可靠的结果,我们通过随机洗牌的数据分布进行了100次实验。分类结果表明,混合的合成少数族裔过采样技术(SMOTE) - 正态化-CNN优于在24个不平衡数据集上达到99.08%精度的不同方法。因此,提出的混合模型可以应用于其他实际数据集上的不平衡算法分类问题。
translated by 谷歌翻译
This paper presents a novel adaptive synthetic (ADASYN) sampling approach for learning from imbalanced data sets. The essential idea of ADASYN is to use a weighted distribution for different minority class examples according to their level of difficulty in learning, where more synthetic data is generated for minority class examples that are harder to learn compared to those minority examples that are easier to learn. As a result, the ADASYN approach improves learning with respect to the data distributions in two ways: (1) reducing the bias introduced by the class imbalance, and (2) adaptively shifting the classification decision boundary toward the difficult examples. Simulation analyses on several machine learning data sets show the effectiveness of this method across five evaluation metrics.
translated by 谷歌翻译
In this paper we i n vestigate the use of receiver operating characteristic (ROC) curve f o r the evaluation of machine learning algorithms. In particular, we i n vestigate the use of the area under the ROC curve ( A UC) as a measure of classi er performance. The machine learning algorithms used are chosen to be representative of those in common use: two decision trees (C4.5 and Multiscale Classi er) two n e u r a l n e t works (Perceptron and Multi-layer Perceptron) and two statistical methods (K-Nearest Neighbours and a Quadratic Discriminant F unction).The evaluation is done using six, \real world," medical diagnostics data sets that contain a varying numbers of inputs and samples, but are primarily continuous input, binary classi cation problems. We i d e n tify three forms of bias that can a ect comparisons of this type (estimation, selection, and expert bias) and detail the methods used to avoid them. We compare and discuss the use of AUC with the conventional measure of classi er performance, overall accuracy (the probability of a correct response). It is found that AUC exhibits a number of desirable properties when compared to overall accuracy: increased sensitivity in Analysis of Variance (ANOVA) tests a standard error that decreased as both AUC and the number of test samples increased decision threshold independent invariant t o a priori class probabilities and it gives an indication of the amount o f \ w ork done" by a classi cation scheme, giving low scores to both random and \one class only" classi ers.It has been known for some time that AUC actually represents the probability that a randomly chosen positive example is correctly rated (ranked) with greater suspicion than a randomly chosen negative example. Moreover, this probability of correct ranking is the same quantity estimated by the non-parametric Wilcoxon statistic. We use this equivalence to show that the standard deviation of AUC, estimated using 10 fold cross validation, is a reliable estimator of the standard error estimated using the Wilcoxon test. The paper concludes with the recommendation that AUC be used in preference to overall accuracy when \single number" evaluation of machine learning algorithms is required.
translated by 谷歌翻译
众所周知,诸如超紧凑型矮人(UCDS)和周围地球簇(GCS)的紧凑型恒星系统是已知的,是已经形成这些星系的合并事件的示踪剂。因此,识别这些系统允许研究星系大规模组装,形成和进化。然而,在使用成像数据的缺乏检测UCDS / GCS的光谱信息中非常不确定。在这里,我们的目标是使用6个过滤器中的Fornax Galaxy集群的多波长成像数据训练机器学习模型,将这些对象与前景恒星和背景星系分开,即在6个过滤器中,即u,g,r,i,j和ks。对象的类是高度不平衡的,这对于许多自动分类技术来说是有问题的。因此,我们使用合成少数民族过度采样来处理培训数据的不平衡。然后,我们比较两个分类器,即本地化的广义矩阵学习矢量量化(LGMLVQ)和随机林(RF)。这两种方法都能够以精度识别UCDS / GCS,并召回> 93%,并提供反映每个特征尺寸%(颜色和角度尺寸)的重要性的相关性。这两种方法都检测角度尺寸作为该分类问题的重要标记。虽然U-I和I-KS的颜色指数是最重要的颜色的天文期望,但我们的分析表明,G-R等颜色更具信息,可能是因为发信噪比更高。除了优异的性能之外,LGMLVQ方法允许通过为每个贡献中所证明的数据提供了对每个单独的类,类的代表性样本以及数据的非线性可视化的可能性来实现进一步的解释性。我们得出结论,采用机器学习技术来识别UCDS / GCS可能导致有前途的结果。
translated by 谷歌翻译
由于欺诈模式随着时间的流逝而变化,并且欺诈示例的可用性有限,以学习这种复杂的模式,因此欺诈检测是一项具有挑战性的任务。因此,借助智能版本的机器学习(ML)工具的欺诈检测对于确保安全至关重要。欺诈检测是主要的ML分类任务;但是,相应的ML工具的最佳性能取决于最佳的超参数值的使用。此外,在不平衡类中的分类非常具有挑战性,因为它在少数群体中导致绩效差,大多数ML分类技术都忽略了。因此,我们研究了四种最先进的ML技术,即逻辑回归,决策树,随机森林和极端梯度提升,它们适用于处理不平衡类别以最大程度地提高精度并同时降低假阳性。首先,这些分类器经过两个原始基准测试不平衡检测数据集的培训,即网站网站URL和欺诈性信用卡交易。然后,通过实现采样框架,即RandomundSampler,Smote和Smoteenn,为每个原始数据集生产了三个合成平衡的数据集。使用RandomzedSearchCV方法揭示了所有16个实验的最佳超参数。使用两个基准性能指标比较了欺诈检测中16种方法的有效性,即接收器操作特性(AUC ROC)和精度和召回曲线下的面积(AUC PR)(AUC PR)。对于网络钓鱼网站URL和信用卡欺诈事务数据集,结果表明,对原始数据的极端梯度提升显示了不平衡数据集中值得信赖的性能,并以AUC ROC和AUC PR来超越其他三种方法。
translated by 谷歌翻译
数据不平衡,即来自不同课程的培训观测数量之间的歧视,仍然是影响当代机器学习的最重要挑战之一。数据预处理技术可以减少数据不平衡对传统分类算法的负面影响,可以减少操纵训练数据以人为地降低不平衡程度的方法。然而,现有的数据预处理技术,特别是粉迹及其衍生物构成最普遍的数据预处理的范式,往往易于各种数据难度因素。这部分是由于原始粉碎算法不利用有关多数类观察的信息的事实。本文的重点是利用少数群体和多数阶级的分布的信息,自然地发展新的数据重采样策略。本文总结了12个研究论文的内容,专注于所提出的二进制数据重采采样策略,它们与多级环境的翻译,以及对组织病理数据分类问题的实际应用。
translated by 谷歌翻译
不平衡的分类问题成为数据挖掘和机器学习中的重要和具有挑战性问题之一。传统分类器的性能将受到许多数据问题的严重影响,例如类不平衡问题,类重叠和噪声。 Tomek-Link算法仅用于在提出时清理数据。近年来,已经报道了将Tomek-Link算法与采样技术结合起来。 Tomek-Link采样算法可以有效地减少数据上的类重叠,删除难以区分的多数实例,提高算法分类精度。然而,Tomek-Links下面采样算法仅考虑全局彼此的最近邻居并忽略潜在的本地重叠实例。当少数群体实例的数量很小时,取样效果不令人满意,分类模型的性能改善并不明显。因此,在Tomek-Link的基础上,提出了一种多粒度重新标记的取样算法(MGRU)。该算法完全考虑了本地粒度子空间中的数据集的本地信息,并检测数据集中的本地潜在重叠实例。然后,根据全局重新标记的索引值消除重叠的多数实例,这有效地扩展了Tomek-Link的检测范围。仿真结果表明,当我们选择欠采样的最佳全局重新标记索引值时,所提出的下采样算法的分类准确性和泛化性能明显优于其他基线算法。
translated by 谷歌翻译
随着网络基础设施提高,个人贷款的需求增长,对等十年来,对等体(P2P)贷款平台已迅速增长。在没有传统金融机构的帮助下,这些平台允许用户创建对等贷款关系。评估借款人的信贷至关重要,以减少P2P平台的违约率和良性开发。构建个人信用评分机学习模型可以有效预测用户是否会在P2P平台上偿还贷款。并处理数据异常值和样本不平衡问题可能会影响机器学习模型的最终效果。已经有一些关于平衡采样方法的研究,但是对机器学习模型有效性的异常检测方法及其与平衡采样方法的影响尚未得到充分研究。在本文中,研究了使用不同异常检测方法对常用机器学习模型的不同异常检测方法和平衡采样方法的影响。 44,487贷款俱乐部样品的实验表明,适当的异常检测可以提高机器学习模型的有效性,平衡采样方法仅对几种机器学习模型(如MLP)有良好的影响。
translated by 谷歌翻译
由于医疗保健是关键方面,健康保险已成为最大程度地减少医疗费用的重要计划。此后,由于保险的增加,医疗保健行业的欺诈活动大幅增加,欺诈行业已成为医疗费用上升的重要贡献者,尽管可以使用欺诈检测技术来减轻其影响。为了检测欺诈,使用机器学习技术。美国联邦政府的医疗补助和医疗保险服务中心(CMS)在本研究中使用“医疗保险D部分”保险索赔来开发欺诈检测系统。在类不平衡且高维的Medicare数据集中使用机器学习算法是一项艰巨的任务。为了紧凑此类挑战,目前的工作旨在在数据采样之后执行功能提取,然后应用各种分类算法,以获得更好的性能。特征提取是一种降低降低方法,该方法将属性转换为实际属性的线性或非线性组合,生成较小,更多样化的属性集,从而降低了尺寸。数据采样通常用于通过扩大少数族裔类的频率或降低多数类的频率以获得两种类别的出现数量大约相等的频率来解决类不平衡。通过标准性能指标评估所提出的方法。因此,为了有效地检测欺诈,本研究将自动编码器作为特征提取技术,合成少数族裔过采样技术(SMOTE)作为数据采样技术,以及各种基于决策树的分类器作为分类算法。实验结果表明,自动编码器的结合,然后在LightGBM分类器上获得SMOTE,取得了最佳的结果。
translated by 谷歌翻译