This paper presents a novel adaptive synthetic (ADASYN) sampling approach for learning from imbalanced data sets. The essential idea of ADASYN is to use a weighted distribution for different minority class examples according to their level of difficulty in learning, where more synthetic data is generated for minority class examples that are harder to learn compared to those minority examples that are easier to learn. As a result, the ADASYN approach improves learning with respect to the data distributions in two ways: (1) reducing the bias introduced by the class imbalance, and (2) adaptively shifting the classification decision boundary toward the difficult examples. Simulation analyses on several machine learning data sets show the effectiveness of this method across five evaluation metrics.
translated by 谷歌翻译
Learning classifiers using skewed or imbalanced datasets can occasionally lead to classification issues; this is a serious issue. In some cases, one class contains the majority of examples while the other, which is frequently the more important class, is nevertheless represented by a smaller proportion of examples. Using this kind of data could make many carefully designed machine-learning systems ineffective. High training fidelity was a term used to describe biases vs. all other instances of the class. The best approach to all possible remedies to this issue is typically to gain from the minority class. The article examines the most widely used methods for addressing the problem of learning with a class imbalance, including data-level, algorithm-level, hybrid, cost-sensitive learning, and deep learning, etc. including their advantages and limitations. The efficiency and performance of the classifier are assessed using a myriad of evaluation metrics.
translated by 谷歌翻译
本文提出了一种基于对不平衡数据集的图形的新的RWO采样(随机步行过度采样)。在该方法中,引入了基于采样的下采样和过采样方法的两种方案,以使接近信息保持对噪声和异常值的鲁棒。在构建少数群体类上的第一个图形之后,RWO取样将在选定的样本上实现,其余部分保持不变。第二图是为多数类构造的,除去低密度区域(异常值)中的样品被移除。最后,在所提出的方法中,选择高密度区域中的多数类别的样品,并消除其余部分。此外,利用RWO取样,虽然未提高异常值,但虽然少数群体类的边界增加。测试该方法,并将评估措施的数量与先前的九个连续属性数据集进行比较,具有不同的过采集率和一个数据集,用于诊断Covid-19疾病。实验结果表明了所提出的不平衡数据分类方法的高效率和灵活性
translated by 谷歌翻译
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
translated by 谷歌翻译
不平衡的分类问题成为数据挖掘和机器学习中的重要和具有挑战性问题之一。传统分类器的性能将受到许多数据问题的严重影响,例如类不平衡问题,类重叠和噪声。 Tomek-Link算法仅用于在提出时清理数据。近年来,已经报道了将Tomek-Link算法与采样技术结合起来。 Tomek-Link采样算法可以有效地减少数据上的类重叠,删除难以区分的多数实例,提高算法分类精度。然而,Tomek-Links下面采样算法仅考虑全局彼此的最近邻居并忽略潜在的本地重叠实例。当少数群体实例的数量很小时,取样效果不令人满意,分类模型的性能改善并不明显。因此,在Tomek-Link的基础上,提出了一种多粒度重新标记的取样算法(MGRU)。该算法完全考虑了本地粒度子空间中的数据集的本地信息,并检测数据集中的本地潜在重叠实例。然后,根据全局重新标记的索引值消除重叠的多数实例,这有效地扩展了Tomek-Link的检测范围。仿真结果表明,当我们选择欠采样的最佳全局重新标记索引值时,所提出的下采样算法的分类准确性和泛化性能明显优于其他基线算法。
translated by 谷歌翻译
从不平衡数据中学习是一项具有挑战性的任务。在进行不平衡数据训练时,标准分类算法的性能往往差。需要通过修改数据分布或重新设计基础分类算法以实现理想的性能来采用一些特殊的策略。现实世界数据集中不平衡的流行率导致为班级不平衡问题创造了多种策略。但是,并非所有策略在不同的失衡情况下都有用或提供良好的性能。处理不平衡的数据有许多方法,但是尚未进行此类技术的功效或这些技术之间的实验比较。在这项研究中,我们对26种流行抽样技术进行了全面分析,以了解它们在处理不平衡数据方面的有效性。在50个数据集上进行了严格的实验,具有不同程度的不平衡,以彻底研究这些技术的性能。已经提出了对技术的优势和局限性的详细讨论,以及如何克服此类局限性。我们确定了影响采样策略的一些关键因素,并提供有关如何为特定应用选择合适的采样技术的建议。
translated by 谷歌翻译
不平衡的数据(ID)是阻止机器学习(ML)模型以实现令人满意的结果的问题。 ID是一种情况,即属于一个类别的样本的数量超过另一个类别的情况,这使此类模型学习过程偏向多数类。近年来,为了解决这个问题,已经提出了几种解决方案,该解决方案选择合成为少数族裔类生成新数据,或者减少平衡数据的多数类的数量。因此,在本文中,我们研究了基于深神经网络(DNN)和卷积神经网络(CNN)的方法的有效性,并与各种众所周知的不平衡数据解决方案混合,这意味着过采样和降采样。为了评估我们的方法,我们使用了龙骨,乳腺癌和Z-Alizadeh Sani数据集。为了获得可靠的结果,我们通过随机洗牌的数据分布进行了100次实验。分类结果表明,混合的合成少数族裔过采样技术(SMOTE) - 正态化-CNN优于在24个不平衡数据集上达到99.08%精度的不同方法。因此,提出的混合模型可以应用于其他实际数据集上的不平衡算法分类问题。
translated by 谷歌翻译
使用不平衡数据集的二进制分类具有挑战性。模型倾向于将所有样本视为属于多数类的样本。尽管现有的解决方案(例如抽样方法,成本敏感方法和合奏学习方法)提高了少数族裔类别的准确性,但这些方法受到过度拟合问题或难以决定的成本参数的限制。我们提出了HADR,这是一种降低尺寸的混合方法,包括数据块构建,降低性降低和与深度神经网络分类器的合奏学习。我们评估了八个不平衡的公共数据集的性能,从召回,g均值和AUC方面。结果表明,我们的模型优于最先进的方法。
translated by 谷歌翻译
在过去的二十年中,已经采用了过采样来克服从不平衡数据集中学习的挑战。文献中提出了许多解决这一挑战的方法。另一方面,过采样是一个问题。也就是说,在解决现实世界问题时,经过虚拟数据训练的模型可能会出色地失败。过采样方法的根本困难是,鉴于现实生活中的人群,合成的样本可能并不真正属于少数群体。结果,在假装代表少数群体的同时,在这些样本上训练分类器可能会导致在现实世界中使用该模型时的预测。我们在本文中分析了大量的过采样方法,并根据隐藏了许多多数示例,设计了一种新的过采样评估系统,并将其与通过过采样过程产生的示例进行了比较。根据我们的评估系统,我们根据它们错误生成的示例进行比较对所有这些方法进行了排名。我们使用70多种超采样方法和三种不平衡现实世界数据集的实验表明,所有研究的过采样方法都会生成最有可能是多数人的少数样本。给定数据和方法,我们认为以目前的形式和方法对从类不平衡数据学习不可靠,应在现实世界中避免。
translated by 谷歌翻译
由于机器学习和数据挖掘领域的不平衡数据集的分类问题,但学习的不平衡学习是重要的并且具有挑战性。提出采样方法来解决这个问题,而基于群集的过采样方法表现出很大的潜力,因为它们的目标是同时解决课堂和级别的不平衡问题。但是,所有现有的聚类方法都基于一次性方法。由于缺乏先验知识,通常存在的群集数量不当设置,这导致集群性能不佳。此外,现有方法可能会产生嘈杂的情况。为了解决这些问题,本文提出了一种基于模糊C-MATION(MLFCM)的基于深度外观信封网络的不平衡学习算法,以及基于最大均值(MINMD)的最小中间层间差异机制。在没有先前知识的情况下,该算法可以使用深度实例包络网络来保证高质量的平衡实例。在实验部分中,三十三个流行的公共数据集用于验证,并且超过十个代表性算法用于比较。实验结果表明,该方法显着优于其他流行的方法。
translated by 谷歌翻译
学习(IL)是数据挖掘应用中广泛存在的重要问题。典型的IL方法利用直观的类努力重新采样或重新重量直接平衡训练集。然而,特定领域的一些最近的研究努力表明,在没有课堂上操纵的情况下可以实现类别不平衡的学习。这提示我们思考两种不同的IL战略之间的关系和班级不平衡的性质。从根本上说,它们对应于IL中存在的两个必要的不平衡:来自不同类别的示例之间的数量差异以及单个类中的易于和硬示例之间,即阶级和级别的帧内不平衡。现有工程未能明确地考虑不平衡,因此遭受次优绩效。鉴于此,我们呈现了双重平衡的集合,即杜博士,一个多功能的集合学习框架。与普遍方法不同,Dube直接执行级别的级别和级别的平衡,而无需依赖基于距离的距离的计算,这允许它在计算效率时实现竞争性能。我们还提出了关于基于杜博伊的不同间/内部平衡策略的优缺点的详细讨论和分析。广泛的实验验证了所提出的方法的有效性。代码和示例可在https://github.com/iCde20222sub/duplebalance获得。
translated by 谷歌翻译
如今,许多分类算法已应用于各个行业,以帮助他们在现实生活中解决他们的问题。但是,在许多二进制分类任务中,少数族裔类中的样本仅构成了所有实例的一小部分,这导致了我们通常患有高失衡比的数据集。现有模型有时将少数族裔类别视为噪音,或者将它们视为遇到数据偏斜的异常值。为了解决这个问题,我们提出了一个装袋合奏学习框架$ ASE $(基于异常得分的合奏学习)。该框架具有基于异常检测算法的评分系统,可以通过将多数类中的样本分为子空间来指导重采样策略。那么,特定数量的实例将从每个子空间中采样较低,以通过与少数族裔类结合来构建子集。我们根据异常检测模型的分类结果和子空间的统计数据计算由子集训练的基本分类器的权重。已经进行了实验,这表明我们的合奏学习模型可以显着提高基本分类器的性能,并且比在广泛的不平衡比率,数据量表和数据维度下的其他现有方法更有效。 $ ase $可以与各种分类器结合使用,我们的框架的每个部分都被证明是合理和必要的。
translated by 谷歌翻译
从课堂上学习不平衡数据集对许多机器学习算法带来了挑战。许多现实世界域通过定义,通过拥有多数阶级的多数阶级,自然具有比其少数级别更多的阶级(例如,真正的银行交易比欺诈性更频繁)。已经提出了许多方法来解决类别不平衡问题,其中最受欢迎的过采样技术(例如Smote)。这些方法在少数群体类中生成合成实例,以平衡数据集,执行提高预测机器学习(ML)模型的性能的数据增强。在本文中,我们推进了一种新的数据增强方法(改编自解释的AI),它在少数类中生成合成,反事实情况。与其他过采样技术不同,该方法使用实际特征值,而不是实例之间的内插值,自适应地将存在于数据集的实例。报告了使用四种不同分类器和25个数据集的几个实验,这表明该反事实增强方法(CFA)在少数类中生成有用的合成数据点。实验还表明,CFA与许多其他过采样方法具有竞争力,其中许多过采样方法是Smote的变种。讨论了CFAS性能的基础,以及在未来测试中可能更好或更糟的情况下的条件。
translated by 谷歌翻译
Concept drift describes unforeseeable changes in the underlying distribution of streaming data over time. Concept drift research involves the development of methodologies and techniques for drift detection, understanding and adaptation. Data analysis has revealed that machine learning in a concept drift environment will result in poor learning results if the drift is not addressed. To help researchers identify which research topics are significant and how to apply related techniques in data analysis tasks, it is necessary that a high quality, instructive review of current research developments and trends in the concept drift field is conducted. In addition, due to the rapid development of concept drift in recent years, the methodologies of learning under concept drift have become noticeably systematic, unveiling a framework which has not been mentioned in literature. This paper reviews over 130 high quality publications in concept drift related research areas, analyzes up-to-date developments in methodologies and techniques, and establishes a framework of learning under concept drift including three main components: concept drift detection, concept drift understanding, and concept drift adaptation. This paper lists and discusses 10 popular synthetic datasets and 14 publicly available benchmark datasets used for evaluating the performance of learning algorithms aiming at handling concept drift. Also, concept drift related research directions are covered and discussed. By providing state-of-the-art knowledge, this survey will directly support researchers in their understanding of research developments in the field of learning under concept drift.
translated by 谷歌翻译
班级失衡对机器学习构成了重大挑战,因为大多数监督学习模型可能对多数级别和少数族裔表现不佳表现出偏见。成本敏感的学习通过以不同的方式处理类别,通常通过用户定义的固定错误分类成本矩阵来解决此问题,以提供给学习者的输入。这种参数调整是一项具有挑战性的任务,需要域知识,此外,错误的调整可能会导致整体预测性能恶化。在这项工作中,我们为不平衡数据提出了一种新颖的成本敏感方法,该方法可以动态地调整错误分类的成本,以响应Model的性能,而不是使用固定的错误分类成本矩阵。我们的方法称为ADACC,是无参数的,因为它依赖于增强模型的累积行为,以便调整下一次增强回合的错误分类成本,并具有有关培训错误的理论保证。来自不同领域的27个现实世界数据集的实验表明,我们方法的优势超过了12种最先进的成本敏感方法,这些方法在不同度量方面表现出一致的改进,例如[0.3] AUC的%-28.56%],平衡精度[3.4%-21.4%],Gmean [4.8%-45%]和[7.4%-85.5%]用于召回。
translated by 谷歌翻译
尽管机器学习取得了巨大进步(ML),但数据不平衡的培训仍然在许多现实世界中构成挑战。在解决此问题的一系列不同技术中,采样算法被视为有效的解决方案。但是,问题更为根本,许多作品强调了实例硬度的重要性。这个问题是指管理不安全或可能嘈杂的实例的重要性,这些实例更可能被错误分类并作为分类绩效不佳的根本原因。本文介绍了Hardvis,这是一种视觉分析系统,旨在处理实例硬度,主要在分类场景中。我们提出的系统协助用户在视觉上比较数据类型的不同分布,根据局部特征选择实例类型,这些实例后来将受主动采样方法的影响,并验证来自底漆或过采样技术的建议对ML模型有益。此外,我们允许用户找到和采样轻松且难以对所有课程的培训实例进行分类,而不是统一地采样/过采样。用户可以从不同角度探索数据子集以决定所有这些参数,而HardVis则跟踪其步骤并评估模型在测试集中分别评估模型的预测性能。最终结果是一个均衡的数据集,可增强ML模型的预测能力。通过假设使用情况和用例证明了Hardvis的功效和有效性。最后,我们还研究了系统的有用,基于我们从ML专家那里收到的反馈。
translated by 谷歌翻译
深度学习模型记住培训数据,这损害了他们推广到代表性不足的课程的能力。我们从经验上研究了卷积神经网络对图像数据不平衡数据的内部表示,并测量了训练和测试集中模型特征嵌入之间的概括差距,这表明该差距对于少数类别的差异更大。这个洞察力使我们能够为不平衡数据设计有效的三相CNN培训框架。该框架涉及训练网络端到端的数据不平衡数据以学习准确的功能嵌入,在学习的嵌入式空间中执行数据增强以平衡火车分布,并在嵌入式平衡的培训数据上微调分类器头。我们建议在培训框架中使用广泛的过采样(EOS)作为数据增强技术。 EOS形成合成训练实例,作为少数族类样本与其最近的敌人之间的凸组合,以减少概括差距。提出的框架提高了与不平衡学习中常用的领先成本敏感和重新采样方法的准确性。此外,它比标准数据预处理方法(例如SMOTE和基于GAN的过采样)更有效,因为它需要更少的参数和更少的训练时间。
translated by 谷歌翻译
类不平衡是分类任务中经常发生的情况。从不平衡数据中学习提出了一个重大挑战,这在该领域引起了很多研究。使用采样技术进行数据预处理是处理数据中存在的不平衡的标准方法。由于标准分类算法在不平衡数据上的性能不佳,因此在培训之前,数据集需要足够平衡。这可以通过过度采样少数族裔级别或对多数级别的采样来实现。在这项研究中,已经提出了一种新型的混合采样算法。为了克服采样技术的局限性,同时确保保留采样数据集的质量,已经开发了一个复杂的框架来正确结合三种不同的采样技术。首先应用邻里清洁规则以减少失衡。然后从策略上与SMOTE算法策略性地采样,以在数据集中获得最佳平衡。该提出的混合方法学称为“ smote-rus-nc”,已与其他最先进的采样技术进行了比较。该策略进一步合并到集合学习框架中,以获得更健壮的分类算法,称为“ SRN-BRF”。对26个不平衡数据集进行了严格的实验,并具有不同程度的失衡。在几乎所有数据集中,提出的两种算法在许多情况下都超过了现有的采样策略,其差额很大。尤其是在流行抽样技术完全失败的高度不平衡数据集中,他们实现了无与伦比的性能。获得的优越结果证明了所提出的模型的功效及其在不平衡域中具有强大采样算法的潜力。
translated by 谷歌翻译
由于欺诈模式随着时间的流逝而变化,并且欺诈示例的可用性有限,以学习这种复杂的模式,因此欺诈检测是一项具有挑战性的任务。因此,借助智能版本的机器学习(ML)工具的欺诈检测对于确保安全至关重要。欺诈检测是主要的ML分类任务;但是,相应的ML工具的最佳性能取决于最佳的超参数值的使用。此外,在不平衡类中的分类非常具有挑战性,因为它在少数群体中导致绩效差,大多数ML分类技术都忽略了。因此,我们研究了四种最先进的ML技术,即逻辑回归,决策树,随机森林和极端梯度提升,它们适用于处理不平衡类别以最大程度地提高精度并同时降低假阳性。首先,这些分类器经过两个原始基准测试不平衡检测数据集的培训,即网站网站URL和欺诈性信用卡交易。然后,通过实现采样框架,即RandomundSampler,Smote和Smoteenn,为每个原始数据集生产了三个合成平衡的数据集。使用RandomzedSearchCV方法揭示了所有16个实验的最佳超参数。使用两个基准性能指标比较了欺诈检测中16种方法的有效性,即接收器操作特性(AUC ROC)和精度和召回曲线下的面积(AUC PR)(AUC PR)。对于网络钓鱼网站URL和信用卡欺诈事务数据集,结果表明,对原始数据的极端梯度提升显示了不平衡数据集中值得信赖的性能,并以AUC ROC和AUC PR来超越其他三种方法。
translated by 谷歌翻译
数据不平衡,即来自不同课程的培训观测数量之间的歧视,仍然是影响当代机器学习的最重要挑战之一。数据预处理技术可以减少数据不平衡对传统分类算法的负面影响,可以减少操纵训练数据以人为地降低不平衡程度的方法。然而,现有的数据预处理技术,特别是粉迹及其衍生物构成最普遍的数据预处理的范式,往往易于各种数据难度因素。这部分是由于原始粉碎算法不利用有关多数类观察的信息的事实。本文的重点是利用少数群体和多数阶级的分布的信息,自然地发展新的数据重采样策略。本文总结了12个研究论文的内容,专注于所提出的二进制数据重采采样策略,它们与多级环境的翻译,以及对组织病理数据分类问题的实际应用。
translated by 谷歌翻译