将机器人部署在现实世界中的机器人(例如家庭和灵活的制造线路)中,要求机器人按需任务。线性时间逻辑(LTL)是一种广泛使用的规范语言,具有组成语法,自然会在任务中引起共同点。但是,大多数先前关于使用LTL规范的强化学习的研究都独立治疗了每个新公式。我们提出了LTL-Transfer,这是一种新颖的算法,通过将培训任务的政策分割为便携式过渡性的技能,能够满足各种各样的LTL LTL规范,同时尊重安全性批判性约束,从而使跨任务的子policy重复使用。我们在Minecraft启发的领域中进行的实验表明,LTL转移能够满足500个看不见的任务中90%以上的能力,同时仅培训50个任务规格,并且从不违反安全限制。我们还在家庭环境中将LTL转移部署在四倍的移动操纵器上,以显示其以零拍的方式转移到许多获取和交付任务的能力。
translated by 谷歌翻译
Linear temporal logic (LTL) is a widely-used task specification language which has a compositional grammar that naturally induces temporally extended behaviours across tasks, including conditionals and alternative realizations. An important problem i RL with LTL tasks is to learn task-conditioned policies which can zero-shot generalize to new LTL instructions not observed in the training. However, because symbolic observation is often lossy and LTL tasks can have long time horizon, previous works can suffer from issues such as training sampling inefficiency and infeasibility or sub-optimality of the found solutions. In order to tackle these issues, this paper proposes a novel multi-task RL algorithm with improved learning efficiency and optimality. To achieve the global optimality of task completion, we propose to learn options dependent on the future subgoals via a novel off-policy approach. In order to propagate the rewards of satisfying future subgoals back more efficiently, we propose to train a multi-step value function conditioned on the subgoal sequence which is updated with Monte Carlo estimates of multi-step discounted returns. In experiments on three different domains, we evaluate the LTL generalization capability of the agent trained by the proposed method, showing its advantage over previous representative methods.
translated by 谷歌翻译
具有高级别规格的自治系统的运动规划具有广泛的应用。然而,涉及定时时间逻辑的正式语言的研究仍在调查中。此外,许多现有结果依赖于用户指定的任务在给定环境中可行的关键假设。当操作环境是动态和未知的挑战时,由于环境可以找到禁止,导致预先定时定时任务无法完全满足潜在冲突的任务。在考虑时间束缚要求时,这些问题变得更具挑战性。为了解决这些挑战,这项工作提出了一种控制框架,其考虑了强制限制来强制执行安全要求和软限制,以启用任务放松。使用度量间隔时间逻辑(MITL)规范来处理时间限制约束。通过构建轻松的定时产品自动机,在线运动规划策略与后退地平线控制器合成以产生政策,以减少优先顺序的降低方式实现多重目标1)正式保证了对硬安全限制的满足感; 2)主要满足软定时任务; 3)尽可能收集时变奖励。放松结构的另一个新颖性是考虑违反时间和任务的不可行情况。提供仿真结果以验证所提出的方法。
translated by 谷歌翻译
当环境稀疏和非马克维亚奖励时,使用标量奖励信号的训练加强学习(RL)代理通常是不可行的。此外,在训练之前对这些奖励功能进行手工制作很容易指定,尤其是当环境的动态仅部分知道时。本文提出了一条新型的管道,用于学习非马克维亚任务规格,作为简洁的有限状态“任务自动机”,从未知环境中的代理体验情节中。我们利用两种关键算法的见解。首先,我们通过将其视为部分可观察到的MDP并为隐藏的Markov模型使用现成的算法,从而学习了由规范的自动机和环境MDP组成的产品MDP,该模型是由规范的自动机和环境MDP组成的。其次,我们提出了一种从学习的产品MDP中提取任务自动机(假定为确定性有限自动机)的新方法。我们学到的任务自动机可以使任务分解为其组成子任务,从而提高了RL代理以后可以合成最佳策略的速率。它还提供了高级环境和任务功能的可解释编码,因此人可以轻松地验证代理商是否在没有错误的情况下学习了连贯的任务。此外,我们采取步骤确保学识渊博的自动机是环境不可静止的,使其非常适合用于转移学习。最后,我们提供实验结果,以说明我们在不同环境和任务中的算法的性能及其合并先前的领域知识以促进更有效学习的能力。
translated by 谷歌翻译
教深入的强化学习(RL)代理在多任务环境中遵循说明是一个挑战性的问题。我们认为用户通过线性时间逻辑(LTL)公式定义了每个任务。但是,用户可能未知的复杂环境中的某些因果关系依赖性未知。因此,当人类用户指定说明时,机器人无法通过简单地按照给定的说明来解决任务。在这项工作中,我们提出了一个分层增强学习(HRL)框架,其中学习了符号过渡模型,以有效地制定高级计划,以指导代理有效地解决不同的任务。具体而言,符号过渡模型是通过归纳逻辑编程(ILP)学习的,以捕获状态过渡的逻辑规则。通过计划符号过渡模型的乘积和从LTL公式得出的自动机的乘积,代理可以解决因果关系依赖性,并将因果复杂问题分解为一系列简单的低级子任务。我们在离散和连续域中的三个环境上评估了提出的框架,显示了比以前的代表性方法的优势。
translated by 谷歌翻译
我们研究了逻辑规范给出的复杂任务的学习策略问题。最近的方法从给定的规范自动生成奖励功能,并使用合适的加强学习算法来学习最大化预期奖励的策略。然而,这些方法对需要高级别计划的复杂任务奠定了差。在这项工作中,我们开发了一种称为Dirl的组成学习方法,可交织高级别的规划和强化学习。首先,Dirl将规范编码为抽象图;直观地,图的顶点和边缘分别对应于状态空间的区域和更简单的子任务。我们的方法然后结合了增强学习,以便在Dijkstra风格的规划算法内为每个边缘(子任务)学习神经网络策略,以计算图表中的高级计划。对具有连续状态和行动空间的一套具有挑战性的控制基准测试的提出方法的评估表明它优于最先进的基线。
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
强化学习(RL)在很大程度上依赖于探索以从环境中学习并最大程度地获得观察到的奖励。因此,必须设计一个奖励功能,以确保从收到的经验中获得最佳学习。以前的工作将自动机和基于逻辑的奖励成型与环境假设相结合,以提供自动机制,以根据任务综合奖励功能。但是,关于如何将基于逻辑的奖励塑造扩大到多代理增强学习(MARL)的工作有限。如果任务需要合作,则环境将需要考虑联合状态,以跟踪其他代理,从而遭受对代理数量的维度的诅咒。该项目探讨了如何针对不同场景和任务设计基于逻辑的奖励成型。我们提出了一种针对半偏心逻辑基于逻辑的MARL奖励成型的新方法,该方法在代理数量中是可扩展的,并在多种情况下对其进行了评估。
translated by 谷歌翻译
顺序决策的两种常见方法是AI计划(AIP)和强化学习(RL)。每个都有优点和缺点。 AIP是可解释的,易于与象征知识集成,并且通常是有效的,但需要前期逻辑域的规范,并且对噪声敏感; RL仅需要奖励的规范,并且对噪声是强大的,但效率低下,不容易提供外部知识。我们提出了一种综合方法,将高级计划与RL结合在一起,保留可解释性,转移和效率,同时允许对低级计划行动进行强有力的学习。我们的方法通过在AI计划问题的状态过渡模型与Markov决策过程(MDP)的抽象状态过渡系统(MDP)之间建立对应关系,从而定义了AIP操作员的分层增强学习(HRL)的选项。通过添加内在奖励来鼓励MDP和AIP过渡模型之间的一致性来学习选项。我们通过比较Minigrid和N房间环境中RL和HRL算法的性能来证明我们的综合方法的好处,从而显示了我们方法比现有方法的优势。
translated by 谷歌翻译
尽管在为一般网络物理系统指定和学习目标方面取得了显着进展,但将这些方法应用于分布式多代理系统仍带来重大挑战。其中包括(a)允许允许本地目标和全球目标表达和相互作用的工艺规范基础,(b)国家和行动空间的驯服爆炸以实现有效的学习,以及(c)最小化协调频率和集合频率参与全球目标的参与者。为了应对这些挑战,我们提出了一个新颖的规范框架,该框架允许自然组成用于指导多代理系统培训的本地和全球目标。我们的技术使学习表达性策略可以使代理人以无协调的方式为本地目标运作,同时使用分散的通信协议来强制执行全球。实验结果支持我们的主张,即使用规范指导的学习可以有效地实现复杂的多代理分布式计划问题。
translated by 谷歌翻译
In inverse reinforcement learning (IRL), a learning agent infers a reward function encoding the underlying task using demonstrations from experts. However, many existing IRL techniques make the often unrealistic assumption that the agent has access to full information about the environment. We remove this assumption by developing an algorithm for IRL in partially observable Markov decision processes (POMDPs). We address two limitations of existing IRL techniques. First, they require an excessive amount of data due to the information asymmetry between the expert and the learner. Second, most of these IRL techniques require solving the computationally intractable forward problem -- computing an optimal policy given a reward function -- in POMDPs. The developed algorithm reduces the information asymmetry while increasing the data efficiency by incorporating task specifications expressed in temporal logic into IRL. Such specifications may be interpreted as side information available to the learner a priori in addition to the demonstrations. Further, the algorithm avoids a common source of algorithmic complexity by building on causal entropy as the measure of the likelihood of the demonstrations as opposed to entropy. Nevertheless, the resulting problem is nonconvex due to the so-called forward problem. We solve the intrinsic nonconvexity of the forward problem in a scalable manner through a sequential linear programming scheme that guarantees to converge to a locally optimal policy. In a series of examples, including experiments in a high-fidelity Unity simulator, we demonstrate that even with a limited amount of data and POMDPs with tens of thousands of states, our algorithm learns reward functions and policies that satisfy the task while inducing similar behavior to the expert by leveraging the provided side information.
translated by 谷歌翻译
创建复杂机器人行为的一种典型方法是组成原子控制器或技能,以使所产生的行为满足高级任务;但是,当无法使用一组技能完成任务时,很难知道如何修改技能以使任务成为可能。我们提出了一种将符号维修与身体可行性检查和实现相结合的方法,以自动修改现有技能,以便机器人可以执行以前不可行的任务。我们在线性时间逻辑(LTL)公式中编码机器人技能,以捕获安全性任务的安全限制和目标。此外,我们的编码捕获了完整的技能执行,而不是先前的工作,而在执行技能之前和之后只有世界状态才被考虑。我们的维修算法提出了符号修改,然后尝试通过修改受符号修复的LTL约束的原始技能来物理实施建议。如果技能不可能,我们会自动为符号维修提供其他约束。我们用巴克斯特和一个清晰的jack狼展示了我们的方法。
translated by 谷歌翻译
马尔可夫决策过程通常用于不确定性下的顺序决策。然而,对于许多方面,从受约束或安全规范到任务和奖励结构中的各种时间(非Markovian)依赖性,需要扩展。为此,近年来,兴趣已经发展成为强化学习和时间逻辑的组合,即灵活的行为学习方法的组合,具有稳健的验证和保证。在本文中,我们描述了最近引入的常规决策过程的实验调查,该过程支持非马洛维亚奖励功能以及过渡职能。特别是,我们为常规决策过程,与在线,增量学习有关的算法扩展,对无模型和基于模型的解决方案算法的实证评估,以及以常规但非马尔维亚,网格世界的应用程序的算法扩展。
translated by 谷歌翻译
从演示(LFD)方法中学习显示了解决多步任务的希望;但是,这些方法不能保证在给定干扰的情况下成功复制任务。在这项工作中,我们确定了这一挑战的根源,例如学习的连续政策失败无法满足演示中隐含的离散计划。通过利用模式(而不是子观念)作为具有模式不变性和目标达到性能属性的离散抽象和运动策略,我们证明我们所学的连续策略可以模拟由线性时间逻辑(LTL)公式指定的任何离散计划。因此,模仿者对任务和运动级别的干扰都具有鲁棒性,并保证取得任务成功。项目页面:https://sites.google.com/view/ltl-ds
translated by 谷歌翻译
本文研究了运动和环境不确定性的最佳运动规划。通过将系统建模作为概率标记的马尔可夫决策过程(PL-MDP),控制目标是合成有限内存策略,在该策略下,该代理满足具有所需满足的线性时间逻辑(LTL)的高级复杂任务可能性。特别地,考虑了满足无限地平线任务的轨迹的成本优化,分析了降低预期平均成本和最大化任务满意度概率之间的权衡。而不是使用传统的Rabin Automata,LTL公式被转换为限制确定性的B \“UCHI自动机(LDBA),其具有更直接的接受条件和更紧凑的图形结构。这项工作的新颖性在于考虑案件LTL规范可能是不可行的,并且在PL-MDP和LDBA之间的轻松产品MDP的开发可能是不可行的和开发。放松的产品MDP允许代理在任务不完全可行的情况下进行修改其运动计划,并量化修订计划的违规测量。然后配制多目标优化问题,共同考虑任务满意度的概率,违反原始任务限制的违规以及策略执行的实施成本,通过耦合的线性计划解决。据最好我们的知识,它是第一个弥合规划修订版和计划前缀和计划的最佳控制合成之间的差距的工作在无限地平线上修复代理轨迹。提供实验结果以证明所提出的框架的有效性。
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
使用高级想法或知识不断学习新任务是人类的关键能力。在本文中,我们提出了用序贯线性时间逻辑公式和奖励机(LSRM)的终身加强学习,这使得代理能够利用以前学习的知识来紧固逻辑指定任务的学习。为了更灵活的任务规范,我们首先介绍连续的线性时间逻辑(SLTL),这是对现有线性时间逻辑(LTL)正式语言的补充。然后,我们利用奖励机(RM)利用具有高级别事件编码的任务的结构奖励功能,并提出RM的自动扩展和高效的知识转移在寿命中连续学习的任务。实验结果表明,LSRM通过在终身学习过程中使用SLTL和知识转移通过RM的任务分解来占据从头开始从头开始学习目标任务的方法。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
将规则无缝整合到学习中(LFD)策略是启用AI代理的现实部署的关键要求。最近,信号时间逻辑(STL)已被证明是将规则作为时空约束的有效语言。这项工作使用蒙特卡洛树搜索(MCT)作为将STL规范集成到香草LFD策略中以提高约束满意度的一种手段。我们建议以STL鲁棒性值来增强MCT启发式,以使树的搜索偏向具有更高限制满意度的分支。虽然无域的方法可以应用于将STL规则在线整合到任何预训练的LFD算法中,但我们选择目标条件的生成对抗性模仿学习作为离线LFD策略。我们将提出的方法应用于规划轨迹的领域,用于在非较低机场周围的通用航空飞机。使用对现实世界数据进行训练的模拟器的结果显示了60%的性能比不使用STL启发式方法的基线LFD方法提高了性能。
translated by 谷歌翻译
近年来,研究人员在设计了用于优化线性时间逻辑(LTL)目标和LTL的目标中的增强学习算法方面取得了重大进展。尽管有这些进步,但解决了这个问题的基本限制,以至于以前的研究暗示,但对我们的知识而言,尚未深入检查。在本文中,我们通过一般的LTL目标理解了学习的硬度。我们在马尔可夫决策过程(PAC-MDP)框架(PAC-MDP)框架中可能大致正确学习的问题正式化,这是一种测量加固学习中的样本复杂性的标准框架。在这一形式化中,我们证明,只有在LTL层次结构中最有限的类别中,才有于仅当公式中的最有限的类别,因此才能获得PAC-MDP的最佳政策。实际上,我们的结果意味着加强学习算法无法在与非有限范围可解除的LTL目标的无限环境的相互作用之后获得其学习政策的性能的PAC-MDP保证。
translated by 谷歌翻译