本文提出了一种控制操纵器系统,掌握刚体有效载荷的方法,因此,由于外部施加的力与另一个自由浮动的刚体(具有不同的惯性特性)相同,因此组合系统的运动与另一个相同。这允许在1-G实验室环境中测试下的缩放航天器原型的零G仿真。由运动反馈和力量/力矩反馈组成的控制器调整了测试航天器的运动,以匹配飞行航天器的运动,即使后者具有灵活的附属物(例如太阳能电池板),而前者则是刚性的。整体系统的稳定性进行了分析研究,结果表明,只要两个航天器的惯性特性不同,并且尊重有效载荷与操纵器的惯性比率的上行,则该系统保持稳定。还提出了重要的实际问题,例如校准和对传感器噪声和量化的敏感性分析。
translated by 谷歌翻译
使用自适应机器学习解决了在不准确运动学模型的情况下,在存在不正确的运动学模型的情况下形成封闭运动链的合作操纵器的自我调整控制问题。两个级联估计器在线更新了与互连操纵器的相对位置/方向不确定性有关的运动学参数,以调整合作控制器,以通过最小值驱动力来实现准确的运动跟踪。该技术允许对所涉及的操纵器的相对运动学进行准确的校准,而无需高精度的终点传感或力测量,因此在经济上是合理的。研究整个实时估计器/控制器系统的稳定性表明,可以确保自适应控制过程的收敛性和稳定性,如果i)角速度向量的方向不会随着时间的推移而保持恒定;参数误差是由一些已知参数的缩放器函数上限。自适应控制器被证明是无奇异性的,即使控制定律涉及在估计参数下计算的矩阵的近似。实验结果证明了传统的反向动态控制方案对运动不准确的跟踪性能的敏感性,而自我调整合作控制器的跟踪误差显着降低。
translated by 谷歌翻译
跳跃可能是克服小地形差距或障碍的有效运动方法。在本文中,我们提出了两种不同的方法,可以用类人形机器人进行跳跃。具体而言,从预定义的COM轨迹开始,我们开发了速度控制器的理论和基于优化技术评估关节输入的优化技术的扭矩控制器。在模拟和类人形机器人ICUB中,对控制器进行了测试。在模拟中,机器人能够使用两个控制器跳跃,而实际系统仅使用速度控制器跳跃。结果突出了控制质心动量的重要性,他们表明联合性能,即腿部和躯干关节的最大功率,以及低水平的控制性能是至关重要的,以实现可接受的结果。
translated by 谷歌翻译
在本文中,提出了一个稳定稳定的轨迹跟踪控制器,用于多uav有效载荷运输。多uav有效负载系统在无人机和有效负载框架的垂直刚性链接之间具有2DOF磁球接头,因此无人机可以自由滚动或自由投球。这些垂直链接紧密地连接到有效载荷上,无法移动。为完整的有效载体 - uav系统得出了输入输出反馈线性化模型以及有效载荷轨迹跟踪的推力矢量控制。关于跟踪控制定律的理论分析表明,控制定律是指数稳定的,从而确保了沿期望轨迹的安全运输。为了验证拟议的控制定律的性能,提供了数值模拟以及高保真凉亭实时仿真的结果。接下来,针对两种实际情况分析了提议的控制器的鲁棒性:有效载荷和有效载荷质量不确定性的外部干扰。结果清楚地表明,所提出的控制器在实现指数稳定的轨迹跟踪的同时具有稳健性和计算效率。
translated by 谷歌翻译
开发了一个领导者追随者系统,用于合作运输。据我们所知,这是一个不需要互联通信的第一工作,并且可以实时修改有效载荷的参考轨迹,以便它可以应用于动态变化的环境。为了在无通信条件下实时跟踪修改的参考轨迹,引导跟随系统被认为是非文展系统,其中开发了控制器以实现有效载荷的渐近跟踪。为了消除安装力传感器的需要,开发了UKFS(Unscented Kalman滤波器)以估计领导者和追随者所施加的力量。进行稳定性分析以证明闭环系统的跟踪误差。仿真结果表明跟踪控制器的良好性能。实验表明,领导者的控制器和追随者可以在现实世界中工作,但是跟踪误差受到限制空间中气流的干扰的影响。
translated by 谷歌翻译
空间机器人应用程序(例如,拆除活动空间碎片)(ASDR)需要在启动之前进行代表性测试。在空间中模仿微重力环境的一种常用方法是基于空气的平台,例如欧洲航天局的轨道机器人技术和GNC Lab(ORGL)。这项工作为ORGL的浮动平台提供了控制架构,配备了八个基于螺线管 - 阀门的推进器和一个反应轮。控制体系结构由两个主要组成部分组成:一个轨迹规划师,该轨迹规划师找到了连接两个状态的最佳轨迹和一个遵循任何物理可行轨迹的轨迹追随者。首先在引入的仿真中评估控制器,在查找和跟随轨迹的轨迹中获得100%的成功率,以在蒙特卡罗测试中来源。单个轨迹也成功地是物理系统。在这项工作中,我们展示了控制器拒绝干扰并遵循数十厘米内的直线轨迹的能力。
translated by 谷歌翻译
本文提出了一项新颖的控制法,以使用尾随机翼无人驾驶飞机(UAV)进行准确跟踪敏捷轨迹,该轨道在垂直起飞和降落(VTOL)和向前飞行之间过渡。全球控制配方可以在整个飞行信封中进行操作,包括与Sideslip的不协调的飞行。显示了具有简化空气动力学模型的非线性尾尾动力学的差异平坦度。使用扁平度变换,提出的控制器结合了位置参考的跟踪及其导数速度,加速度和混蛋以及偏航参考和偏航速率。通过角速度进纸术语包含混蛋和偏航率参考,可以改善随着快速变化的加速度跟踪轨迹。控制器不取决于广泛的空气动力学建模,而是使用增量非线性动态反演(INDI)仅基于局部输入输出关系来计算控制更新,从而导致对简化空气动力学方程中差异的稳健性。非线性输入输出关系的精确反转是通过派生的平坦变换实现的。在飞行测试中对所得的控制算法进行了广泛的评估,在该测试中,它展示了准确的轨迹跟踪和挑战性敏捷操作,例如侧向飞行和转弯时的侵略性过渡。
translated by 谷歌翻译
空中操纵器(AM)表现出特别具有挑战性的非线性动力学;无人机和操纵器携带的是一个紧密耦合的动态系统,相互影响。描述这些动力学的数学模型构成了非线性控制和深度强化学习中许多解决方案的核心。传统上,动力学的配方涉及在拉格朗日框架中的欧拉角参数化或牛顿 - 欧拉框架中的四元素参数化。前者的缺点是诞生奇异性,而后者在算法上是复杂的。这项工作提出了一个混合解决方案,结合了两者的好处,即利用拉格朗日框架的四元化方法,将无奇异参数化与拉格朗日方法的算法简单性联系起来。我们通过提供有关运动学建模过程的详细见解以及一般空中操纵器动力学的表述。获得的动力学模型对实时物理引擎进行了实验验证。获得的动力学模型的实际应用显示在计算的扭矩反馈控制器(反馈线性化)的上下文中,我们通过日益复杂的模型分析其实时功能。
translated by 谷歌翻译
This paper introduces a structure-deformable land-air robot which possesses both excellent ground driving and flying ability, with smooth switching mechanism between two modes. The elaborate coupled dynamics model of the proposed robot is established, including rotors, chassis, especially the deformable structures. Furthermore, taking fusion locomotion and complex near-ground situations into consideration, a model based controller is designed for landing and mode switching under various harsh conditions, in which we realise the cooperation between fused two motion modes. The entire system is implemented in ADAMS/Simulink simulation and in practical. We conduct experiments under various complex scenarios. The results show our robot can accomplish land-air switching swiftly and smoothly, and the designed controller can effectively improve the landing flexibility and reliability.
translated by 谷歌翻译
本文提出了一种容忍故障的3D视觉系统,用于自动机器人操作。特别是,使用集成的Kalman滤波器(KF)中的3D视觉数据和闭环配置中的迭代最接近点(ICP)算法来实现空间对象的姿势估计。内部ICP迭代的最初猜测是由卡尔曼申报人的国家估计传播提供的。卡尔曼过滤器不仅能够估计目标状态,还可以估算其惯性参数。这允许目标一旦滤波,目标就可以预测。因此,由于ICP初始化的精度提高,ICP可以在更广泛的速度上保持姿势跟踪。此外,即使传感器暂时失去其信号,估计器即使由于阻塞造成的损失,估计器将目标的动力学模型纳入估计器中。姿势估计方法的功能通过自动化合作和对接的地面测试床证明。在该实验中,Neptec的激光摄像头系统(LCS)用于对连接到操纵器臂的卫星模型进行实时扫描,该卫星模型是根据轨道和态度动力学驱动的。结果表明,只有在Kalman滤波器和ICP处于闭环配置时,才能实现自由浮动翻滚卫星的可靠跟踪。
translated by 谷歌翻译
最先进的腿机器人可以在其驱动系统的输出处测量扭矩,或者具有透明的驱动系统,从而能够从电动电流计算关节扭矩。无论哪种情况,这种传感器模式很少用于状态估计。在本文中,我们建议使用关节扭矩测量值来估计腿部机器人的质心状态。为此,我们将腿部机器人的全身动力学投射到接触约束的无空间中,从而使动力学的表达独立于接触力。使用受约束的动力学和质心动量矩阵,我们能够直接将关节扭矩和质心态动力学联系起来。使用结果模型作为扩展卡尔曼滤波器(EKF)的过程模型,我们将扭矩测量融合在质心状态估计问题中。通过在具有不同步态的四倍机器人上进行的实际实验,我们证明,与直接计算相比,基于扭矩的EKF的估计质心状态大大改善了这些数量的回收率。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
Developing and testing algorithms for autonomous vehicles in real world is an expensive and time consuming process. Also, in order to utilize recent advances in machine intelligence and deep learning we need to collect a large amount of annotated training data in a variety of conditions and environments. We present a new simulator built on Unreal Engine that offers physically and visually realistic simulations for both of these goals. Our simulator includes a physics engine that can operate at a high frequency for real-time hardware-in-the-loop (HITL) simulations with support for popular protocols (e.g. MavLink). The simulator is designed from the ground up to be extensible to accommodate new types of vehicles, hardware platforms and software protocols. In addition, the modular design enables various components to be easily usable independently in other projects. We demonstrate the simulator by first implementing a quadrotor as an autonomous vehicle and then experimentally comparing the software components with real-world flights.
translated by 谷歌翻译
This work presents an actuation framework for a bioinspired flapping drone called Aerobat. This drone, capable of producing dynamically versatile wing conformations, possesses 14 body joints and is tail-less. Therefore, in our robot, unlike mainstream flapping wing designs that are open-loop stable and have no pronounced morphing characteristics, the actuation, and closed-loop feedback design can pose significant challenges. We propose a framework based on integrating mechanical intelligence and control. In this design framework, small adjustments led by several tiny low-power actuators called primers can yield significant flight control roles owing to the robot's computational structures. Since they are incredibly lightweight, the system can host the primers in large numbers. In this work, we aim to show the feasibility of joint's motion regulation in Aerobat's untethered flights.
translated by 谷歌翻译
We designed and constructed an A-sized base autonomous underwater vehicle (AUV), augmented with a stack of modular and extendable hardware and software, including autonomy, navigation, control and high fidelity simulation capabilities (A-size stands for the standard sonobuoy form factor, with a maximum diameter of 124 mm). Subsequently, we extended this base vehicle with a novel tuna-inspired morphing fin payload module (referred to as the Morpheus AUV), to achieve good directional stability and exceptional maneuverability; properties that are highly desirable for rigid hull AUVs, but are presently difficult to achieve because they impose contradictory requirements. The morphing fin payload allows the base AUV to dynamically change its stability-maneuverability qualities by using morphing fins, which can be deployed, deflected and retracted, as needed. The base vehicle and Morpheus AUV were both extensively field tested in-water in the Charles river, Massachusetts, USA; by conducting hundreds of hours of operations over a period of two years. The maneuvering capability of the Morpheus AUV was evaluated with and without the use of morphing fins to quantify the performance improvement. The Morpheus AUV was able to showcase an exceptional turning rate of around 25-35 deg/s. A maximum turn rate improvement of around 35% - 50% was gained through the use of morphing fins.
translated by 谷歌翻译
微空中车辆(MAVS)在户外操作的限制靠近障碍物,通过他们承受风阵风的能力。目前广泛的位置控制方法,例如比例整体衍生物控制在阵风的影响下不会均匀。增量非线性动态反转(INDI)是一种基于传感器的控制技术,可以控制受扰动的非线性系统。它是为载人飞机或MAVS的态度控制而开发的。在本文中,我们将这种方法概括为严重燃烧负载下MAV的外环控制。在一个实验中对传统的比例积分衍生物(PID)控制器的显着改进进行了说明,其中四轮电机在10米/秒的吹风机排气进出中。控制方法不依赖于频繁的位置更新,如使用标准GPS模块的外部实验中所示。最后,我们研究了使用线性化来计算推力向量增量的效果,与非线性计算相比。该方法需要很少的建模并且是计算效率。
translated by 谷歌翻译
提出了一种能够改变形状中空飞行的新型Quadcopter,允许在四种配置中进行操作,其中包含持续的悬停在三个配置中。这是实现的,而不需要超出Quadcopter典型的四个电动机的执行器。通过自由旋转铰链来实现变形,使车臂通过减少或逆转推力向下折叠。放置在车辆的控制输入上的约束防止臂意外折叠或展开。这允许使用现有的四转器控制器和轨迹生成算法,只有最小的增加的复杂性。对于我们在悬停的实验载体中,我们发现这些约束导致车辆可以产生的最大偏航扭矩的36%减少,但不会导致最大推力或卷和螺距扭矩的减少。实验结果表明,对于典型的操纵,增加的限制对轨迹跟踪性能的影响忽略不计。最后,示出了改变配置的能力,使车辆能够在悬挂导线上移动小通道,并且执行有限的抓取任务。
translated by 谷歌翻译
We propose AstroSLAM, a standalone vision-based solution for autonomous online navigation around an unknown target small celestial body. AstroSLAM is predicated on the formulation of the SLAM problem as an incrementally growing factor graph, facilitated by the use of the GTSAM library and the iSAM2 engine. By combining sensor fusion with orbital motion priors, we achieve improved performance over a baseline SLAM solution. We incorporate orbital motion constraints into the factor graph by devising a novel relative dynamics factor, which links the relative pose of the spacecraft to the problem of predicting trajectories stemming from the motion of the spacecraft in the vicinity of the small body. We demonstrate the excellent performance of AstroSLAM using both real legacy mission imagery and trajectory data courtesy of NASA's Planetary Data System, as well as real in-lab imagery data generated on a 3 degree-of-freedom spacecraft simulator test-bed.
translated by 谷歌翻译
我们提出了一种能够跟踪高度侵略性轨迹的新的四轮电路几何控制方案。我们的几何控制器使用所以(3)的对数图来表达Lie代数中的旋转误差,并且我们表明它是全球有吸引力的,而无需复杂的混合切换方案。我们展示了我们的控制器在模拟实验中对高侵袭性轨迹的表现。另外,我们介绍了该控制器的适应,该控制器允许我们在板载飞行控制单元上有效地接口角速率控制器,并显示这种适当的控制方案在四轮硬件平台上跟踪激发轨迹的能力。
translated by 谷歌翻译