使用自适应机器学习解决了在不准确运动学模型的情况下,在存在不正确的运动学模型的情况下形成封闭运动链的合作操纵器的自我调整控制问题。两个级联估计器在线更新了与互连操纵器的相对位置/方向不确定性有关的运动学参数,以调整合作控制器,以通过最小值驱动力来实现准确的运动跟踪。该技术允许对所涉及的操纵器的相对运动学进行准确的校准,而无需高精度的终点传感或力测量,因此在经济上是合理的。研究整个实时估计器/控制器系统的稳定性表明,可以确保自适应控制过程的收敛性和稳定性,如果i)角速度向量的方向不会随着时间的推移而保持恒定;参数误差是由一些已知参数的缩放器函数上限。自适应控制器被证明是无奇异性的,即使控制定律涉及在估计参数下计算的矩阵的近似。实验结果证明了传统的反向动态控制方案对运动不准确的跟踪性能的敏感性,而自我调整合作控制器的跟踪误差显着降低。
translated by 谷歌翻译
这项工作的目的是利用一种称为虚拟分解控制(VDC)的自适应分散控制方法来控制7度自由度(DOF)右上线BIMB外骨骼的最终效果的方向和位置。流行的自适应VDC方法需要调整13N适应性增长以及26N上和下参数边界,其中n是刚体的数量。因此,利用VDC方案控制高DOF机器人,例如7-DOF上LIMB外骨骼可能是一项艰巨的任务。在本文中,采用了一种新的适应函数,即所谓的自然适应定律(NAL),以消除VDC的这些负担,从而使所有13N的增长降低到一个并消除对上和下限的依赖性。为此,基于VDC的动态方程进行了重组,并使惯性参数向量与NAL兼容。然后,利用NAL自适应函数设计新的自适应VDC方案。这种新型的自适应VDC方法可确保无需上限和下限的估计参数的身体一致性条件。最后,通过虚拟稳定性概念和随附的功能证明了算法的渐近稳定性。实验结果用于证明拟议的新自适应VDC方案的出色性能。
translated by 谷歌翻译
受约束运动控制的最新进展使其成为在具有挑战性的任务中使用任意几何形状控制机器人的有吸引力的策略。当前大多数作品都假定机器人运动模型足够精确,可以完成手头的任务。但是,随着机器人应用的需求和安全要求的增加,需要在线补偿运动学不准确的控制器。我们提出了基于二次编程的自适应约束运动控制策略,该策略使用部分或完整的任务空间测量来补偿在线校准错误。与最先进的运动学控制策略相比,我们的方法在实验中得到了验证。
translated by 谷歌翻译
本文提出了一种控制操纵器系统,掌握刚体有效载荷的方法,因此,由于外部施加的力与另一个自由浮动的刚体(具有不同的惯性特性)相同,因此组合系统的运动与另一个相同。这允许在1-G实验室环境中测试下的缩放航天器原型的零G仿真。由运动反馈和力量/力矩反馈组成的控制器调整了测试航天器的运动,以匹配飞行航天器的运动,即使后者具有灵活的附属物(例如太阳能电池板),而前者则是刚性的。整体系统的稳定性进行了分析研究,结果表明,只要两个航天器的惯性特性不同,并且尊重有效载荷与操纵器的惯性比率的上行,则该系统保持稳定。还提出了重要的实际问题,例如校准和对传感器噪声和量化的敏感性分析。
translated by 谷歌翻译
本文着重于自适应和耐断层的视力引导的机器人系统,该系统可以选择最适合的控制动作,如果在短期内发生视觉系统的部分或完全失败。此外,自主机器人系统会考虑物理和操作约束,以执行特定视觉伺服任务的需求,以最小化成本功能。层次控制体系结构是基于迭代最接近点(ICP)图像登记的变体的交织集成,开发的,这是约束的噪声自适应卡尔曼滤波器,故障检测逻辑和恢复,以及受约束的最佳路径计划器。动态估计器估计运动预测所需的未知状态和不确定的参数,同时对估计过程的一致性施加了一组不平等约束,并在面对意外的视力错误时适应了Kalman滤波器参数。随后是基于故障检测逻辑实施故障恢复策略,该逻辑使用图像注册的度量拟合误差来监视视觉反馈的健康状况。随后,估计/预测的姿势和参数将传递给最佳路径计划器,以使机器人最终效应器尽快将移动目标的握把到达移动目标的抓地点目标的视线角。
translated by 谷歌翻译
在本文中,提出了针对动力学不确定性的机器人操纵器提出的人工延迟阻抗控制器。控制定律将超级扭曲算法(STA)类型的二阶切换控制器通过新颖的广义过滤跟踪误差(GFTE)统一延迟估计(TDE)框架。虽然时间延迟的估计框架可以通过估算不确定的机器人动力学和相互作用力来从状态和控制工作的近期数据中估算不确定的机器人动力学和相互作用力来准确建模机器人动力学,但外部循环中的第二阶切换控制法可以在时间延迟估计的情况下提供稳健性(TDE)由于操纵器动力学的近似而引起的误差。因此,拟议的控制定律试图在机器人最终效应变量之间建立所需的阻抗模型,即在存在不确定性的情况下,在遇到平滑接触力和自由运动期间的力和运动。使用拟议的控制器以及收敛分析的两个链接操纵器的仿真结果显示出验证命题。
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译
Most impedance control schemes in robotics implement a desired passive impedance, allowing for stable interaction between the controlled robot and the environment. However, there is little guidance on the selection of the desired impedance. In general, finding the best stiffness and damping parameters is a challenging task. This paper contributes to this problem by connecting impedance control to robust control, with the goal of shaping the robot performances via feedback. We provide a method based on linear matrix inequalities with sparsity constraints to derive impedance controllers that satisfy a H-infinity performance criterion. Our controller guarantees passivity of the controlled robot and local performances near key poses.
translated by 谷歌翻译
软机器均由柔顺性和可变形的材料制成,可以对传统的刚性机器人进行具有挑战性的任务。软机器人的固有依从性使其更适合和适应与人类和环境的相互作用。然而,这种优势以成本为准:他们的连续性性质使得强大地发展基于稳健的基于模型的控制策略。具体地,解决这一挑战的自适应控制方法尚未应用于物理软机械臂。这项工作介绍了使用Euler-Lagrange方法对软连续式机械手进行动态的重新装配。该模型消除了先前作品中的简化假设,并提供了更准确的机器人惯性描述。基于我们的模型,我们介绍了任务空间自适应控制方案。该控制器对模型参数不确定性和未知输入干扰具有稳健。控制器在物理软连续臂上实现。进行了一系列实验以验证控制器在不同有效载荷下的任务空间轨迹跟踪中的有效性。在准确性和稳健性方面,控制器均优于最先进的方法。此外,所提出的基于模型的控制设计是柔性的,并且可以广泛地推广到具有任意数量的连续段的任何连续型机器人臂。
translated by 谷歌翻译
人与机器人之间的双向对象移交可以在机器人以人为中心的制造或服务方面具有重要的功能技能。实现此技能的问题在于任何解决方案的能力来处理三个重要方面:(i)交接阶段的同步时间;(ii)对象的处理构成约束;(iii)理解触觉交换以无缝地实现(i)的某些步骤。我们为(i)和(ii)提出了一种新的方法,该方法包括在任务空间二次编程控制框架中明确制定移交过程作为约束,以实现隐式时间和轨迹相遇。我们的方法是在熊猫机器人手臂上实施的,从人类操作员那里拿走对象。
translated by 谷歌翻译
拟议的控制方法使用基于自适应的馈电控制器来为CDPR建立一个被动输入输出映射,该映射与线性不变的严格阳性真实反馈控制器一起使用,以确保稳健的闭环输入输出稳定性和渐进式姿势轨迹通过消极定理跟踪。所提出的控制器的新颖性是其配方用于一系列有效载荷态度参数化,包括任何无约束的态度参数化,四元组或方向余弦矩阵(DCM)。通过用刚性和柔性电缆的CDPR进行数值模拟,证明了所提出的控制器的性能和鲁棒性。结果证明了仔细定义CDPR的姿势误差的重要性,CDPR的姿势误差是在使用Quaternion和dcm时以乘法方式执行的,并且在使用不受约束的态度参数时(例如Euler-andle-angle序列)时以特定的添加剂方式执行。
translated by 谷歌翻译
本文提出了一种具有平行$ - $串行结构的重型操纵器的新颖建模方法。每次考虑并行$ - $串行结构包含一个旋转段,其具有由无源旋转接头连接的刚性连杆,并由线性液压致动器致动,从而形成闭合的运动回路。另外,也考虑由由液压线性致动器驱动的棱柱接头组成的棱柱形段。执行器力的表达式使用Newton $ - $ euler(n $ - $ e)动态制定。推导过程不假设从操纵器链路解耦的无麻麻空致动器,这在拉格朗日动力学制剂中是常见的。致动器压力动力学包括在分析中,总共引进到普通微分方程(ODES)的三阶系统。在N $ - $ E框架中提出的模型,比其前身更少的参数,激发了虚拟分解控制(VDC)系统过程的修订,以制定基于新模型的控制法。获得每个通用机械手旋转和棱柱形段的虚拟稳定性,导致整个机器人的Lyapunov稳定性。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
本文提出了一种容忍故障的3D视觉系统,用于自动机器人操作。特别是,使用集成的Kalman滤波器(KF)中的3D视觉数据和闭环配置中的迭代最接近点(ICP)算法来实现空间对象的姿势估计。内部ICP迭代的最初猜测是由卡尔曼申报人的国家估计传播提供的。卡尔曼过滤器不仅能够估计目标状态,还可以估算其惯性参数。这允许目标一旦滤波,目标就可以预测。因此,由于ICP初始化的精度提高,ICP可以在更广泛的速度上保持姿势跟踪。此外,即使传感器暂时失去其信号,估计器即使由于阻塞造成的损失,估计器将目标的动力学模型纳入估计器中。姿势估计方法的功能通过自动化合作和对接的地面测试床证明。在该实验中,Neptec的激光摄像头系统(LCS)用于对连接到操纵器臂的卫星模型进行实时扫描,该卫星模型是根据轨道和态度动力学驱动的。结果表明,只有在Kalman滤波器和ICP处于闭环配置时,才能实现自由浮动翻滚卫星的可靠跟踪。
translated by 谷歌翻译
空中操纵器(AM)表现出特别具有挑战性的非线性动力学;无人机和操纵器携带的是一个紧密耦合的动态系统,相互影响。描述这些动力学的数学模型构成了非线性控制和深度强化学习中许多解决方案的核心。传统上,动力学的配方涉及在拉格朗日框架中的欧拉角参数化或牛顿 - 欧拉框架中的四元素参数化。前者的缺点是诞生奇异性,而后者在算法上是复杂的。这项工作提出了一个混合解决方案,结合了两者的好处,即利用拉格朗日框架的四元化方法,将无奇异参数化与拉格朗日方法的算法简单性联系起来。我们通过提供有关运动学建模过程的详细见解以及一般空中操纵器动力学的表述。获得的动力学模型对实时物理引擎进行了实验验证。获得的动力学模型的实际应用显示在计算的扭矩反馈控制器(反馈线性化)的上下文中,我们通过日益复杂的模型分析其实时功能。
translated by 谷歌翻译
我们展示了一个具有自动调整的入口控制器,该控制器可用于单个和多点接触机器人(例如,带有点脚或多指握把的腿部机器人)。控制器的目标是跟踪每个接触点的扳手轮廓,同时考虑旋转摩擦引起的额外扭矩。我们的接收控制器在在线操作期间具有自适应性,该方法通过自动调整方法调整了控制器的收益,同时遵循几个培训目标,以促进控制器稳定性,例如尽可能接近跟踪扳手配置文件,以确保控制输出在实力之内限制最小化滑移并避免运动学奇异性。我们使用多限制的攀登机器人来证明控制器在硬件上的鲁棒性,用于操纵和运动任务。
translated by 谷歌翻译
对于多种代理的动力学物理耦合的任务,例如,在合作操作中,各个代理之间的协调变得至关重要,这需要确切的相互作用动力学知识。通常使用集中式估计器来解决此问题,这可能会对整个系统的灵活性和鲁棒性产生负面影响。为了克服这一缺点,我们提出了一个新颖的分布式学习框架,用于使用贝叶斯原理进行合作操作的典范任务。仅使用局部状态信息,每个代理都会获得对象动力学和掌握运动学的估计。这些本地估计是使用动态平均共识组合的。由于该方法的概率基础很强,因此对象动力学和掌握运动学的每个估计都伴随着一种不确定性的度量,该度量允许以高概率保证有界的预测误差。此外,贝叶斯原理直接允许迭代学习以持续的复杂性,以便可以在实时应用程序中在线使用所提出的学习方法。该方法的有效性在模拟的合作操作任务中得到了证明。
translated by 谷歌翻译
在这项工作中,我们考虑了需要通过电缆或机器人臂操纵/运输物体的移动机器人的问题。我们考虑一种操纵机器人的数量冗余的场景,即,可以通过机器人的不同配置获得所需的对象配置。这项工作的目的是表明,可以使用通信来实现机器人中的协同局部反馈控制器,以改善扰动抑制并降低对象中的结构应力。特别地,我们考虑采样测量并通过无线传输测量的现实场景,并且采样周期与系统动态时间常数相当。我们首先提出了一种运动模型,该模型与高增益控制下的整体系统动态一致,然后我们为不同规范下的配置误差提供了足够的指数稳定性和单调减少。最后,我们在完整的动态系统上测试所提出的控制器,显示出局部通信的益处。
translated by 谷歌翻译
本文提出了一种新型的固定时间积分滑动模式控制器,以用于增强物理人类机器人协作。所提出的方法结合了遵守入学控制的外部力量和对整体滑动模式控制(ISMC)不确定性的高度鲁棒性的好处,从而使系统可以在不确定的环境中与人类伴侣合作。首先,在ISMC中应用固定时间滑动表面,以使系统的跟踪误差在固定时间内收敛,无论初始条件如何。然后,将固定的后台控制器(BSP)集成到ISMC中,作为标称控制器,以实现全局固定时间收敛。此外,为了克服奇异性问题,设计并集成到控制器中,这对于实际应用很有用。最后,提出的控制器已被验证,用于具有不确定性和外部力量的两连锁机器人操纵器。结果表明,在跟踪误差和收敛时间的意义上,所提出的控制器是优越的,同时,可以在共享工作区中遵守人类运动。
translated by 谷歌翻译
对于不确定的多个输入多输出(MIMO)非线性系统,实现渐近跟踪是不平凡的,并且大多数现有方法通常需要某些可控性条件,如果涉及意外的执行器故障,这些条件是相当限制性的,甚至是不切实际的。在本说明中,我们提出了一种能够实现具有较不保守(更实用)可控性条件的零误差稳态跟踪的方法。通过将新颖的Nussbaum增益技术和一些积极的集成函数纳入控制设计,我们为系统开发了强大的自适应渐近跟踪控制方案,随着时变的控制增益未知其幅度和方向。通过诉诸某些可行的辅助矩阵的存在,进一步放松了当前的最新可控性条件,从而扩大了可以在拟议的控制方案中考虑的系统类别。所有闭环信号均被确保在全球范围内最终均匀界定。此外,这种控制方法进一步扩展到涉及间歇性执行器断层以及适用于机器人系统的情况。最后,进行了模拟研究以证明该方法的有效性和灵活性。
translated by 谷歌翻译