Developing and testing algorithms for autonomous vehicles in real world is an expensive and time consuming process. Also, in order to utilize recent advances in machine intelligence and deep learning we need to collect a large amount of annotated training data in a variety of conditions and environments. We present a new simulator built on Unreal Engine that offers physically and visually realistic simulations for both of these goals. Our simulator includes a physics engine that can operate at a high frequency for real-time hardware-in-the-loop (HITL) simulations with support for popular protocols (e.g. MavLink). The simulator is designed from the ground up to be extensible to accommodate new types of vehicles, hardware platforms and software protocols. In addition, the modular design enables various components to be easily usable independently in other projects. We demonstrate the simulator by first implementing a quadrotor as an autonomous vehicle and then experimentally comparing the software components with real-world flights.
translated by 谷歌翻译
We designed and constructed an A-sized base autonomous underwater vehicle (AUV), augmented with a stack of modular and extendable hardware and software, including autonomy, navigation, control and high fidelity simulation capabilities (A-size stands for the standard sonobuoy form factor, with a maximum diameter of 124 mm). Subsequently, we extended this base vehicle with a novel tuna-inspired morphing fin payload module (referred to as the Morpheus AUV), to achieve good directional stability and exceptional maneuverability; properties that are highly desirable for rigid hull AUVs, but are presently difficult to achieve because they impose contradictory requirements. The morphing fin payload allows the base AUV to dynamically change its stability-maneuverability qualities by using morphing fins, which can be deployed, deflected and retracted, as needed. The base vehicle and Morpheus AUV were both extensively field tested in-water in the Charles river, Massachusetts, USA; by conducting hundreds of hours of operations over a period of two years. The maneuvering capability of the Morpheus AUV was evaluated with and without the use of morphing fins to quantify the performance improvement. The Morpheus AUV was able to showcase an exceptional turning rate of around 25-35 deg/s. A maximum turn rate improvement of around 35% - 50% was gained through the use of morphing fins.
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
自动无人驾驶飞行器(UAV)惯性导航呈现极端依赖性依赖全球导航卫星系统(GNSS)信号的可用性,而无论哪种慢于但不可避免的位置漂移,如果GNSS可能最终可能导致平台的损失信号未恢复,或者飞机没有达到可以通过遥控器恢复的位置。本文介绍了一种随机的高度高保真仿真,其湍流和不同天气在旨在测试和验证不同导航算法的GNSS拒绝性能的湍流和不同的天气中的固定机翼低交换(尺寸,重量和电源)自主无人机的飞行。它的开源\ nm {\ cc}实施已发布并公开可用。板载传感器包括加速度计,陀螺仪,磁力计,皮革管,空气数据系统,GNSS接收器和数码相机,因此模拟对于惯性,视觉和视觉惯性导航系统有效。考虑了涉及GNSS信号丢失的两种情景:第一个代表了在经历不同的天气时将特派团和前往远程恢复位置中止的使命和前进所涉及的挑战,而第二种模型基于一系列紧密间隔的轴承继续执行任务变化。所有仿真模块都已以尽可能少的简化模拟,以增加结果的现实。虽然飞机表演的实施及其控制系统是确定性的,但是所有其他模块的实施方式,包括使命,传感器,天气,风,湍流和初始估计是完全随机的。这使得通过依赖于这两种情况的大量执行的Monte-Carlo模拟,可以实现每个提出的导航系统的鲁棒评估。
translated by 谷歌翻译
微空中车辆(MAVS)在户外操作的限制靠近障碍物,通过他们承受风阵风的能力。目前广泛的位置控制方法,例如比例整体衍生物控制在阵风的影响下不会均匀。增量非线性动态反转(INDI)是一种基于传感器的控制技术,可以控制受扰动的非线性系统。它是为载人飞机或MAVS的态度控制而开发的。在本文中,我们将这种方法概括为严重燃烧负载下MAV的外环控制。在一个实验中对传统的比例积分衍生物(PID)控制器的显着改进进行了说明,其中四轮电机在10米/秒的吹风机排气进出中。控制方法不依赖于频繁的位置更新,如使用标准GPS模块的外部实验中所示。最后,我们研究了使用线性化来计算推力向量增量的效果,与非线性计算相比。该方法需要很少的建模并且是计算效率。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
我们提出Dave Aquatic Virtual Environals(Dave),这是用于水下机器人,传感器和环境的开源仿真堆栈。传统的机器人模拟器并非旨在应对海洋环境带来的独特挑战,包括但不限于在空间和时间上变化的环境条件,受损或具有挑战性的感知以及在通常未探索的环境中数据的不可用。考虑到各种传感器和平台,对于不可避免地抵制更广泛采用的特定用例,车轮通常会重新发明。在现有模拟器的基础上,我们提供了一个框架,以帮助加快算法的开发和评估,否则这些算法需要在海上需要昂贵且耗时的操作。该框架包括基本的构建块(例如,新车,水跟踪多普勒速度记录仪,基于物理的多微型声纳)以及开发工具(例如,动态测深的产卵,洋流),使用户可以专注于方法论,而不是方法。比软件基础架构。我们通过示例场景,测深数据导入,数据检查的用户界面和操纵运动计划以及可视化来演示用法。
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
自主飞机的导航系统依赖于由套件的读数提供的读数来估计飞机状态。在固定翼车的情况下,传感器套件由三联脉的加速度计,陀螺仪和磁力计,全球导航卫星系统(GNSS)接收器和空中数据系统(皮托管,空气叶片,温度计和晴雨表)组成,并且通常由一个或多个数码相机补充。准确表示每个传感器的行为和错误源,以及摄像机生成的图像,在飞行模拟中是必不可少的,以及对新型惯性或视觉导航算法的评估,以及在低交换的情况下大小,重量和电源)飞机,其中传感器的质量和价格有限。本文为每个传感器提供了现实和可定制的模型,该传感器已被实现为开源C ++模拟。随着时间的推移提供了飞机状态的真正变化,模拟提供了所有传感器产生的误差的时间戳系列,以及地球表面的现实图像,类似于沿着指示的状态位置飞行的真正摄像机飞行的地面表面和态度。
translated by 谷歌翻译
Autonomous Micro Aerial Vehicles are deployed for a variety tasks including surveillance and monitoring. Perching and staring allow the vehicle to monitor targets without flying, saving battery power and increasing the overall mission time without the need to frequently replace batteries. This paper addresses the Active Visual Perching (AVP) control problem to autonomously perch on inclined surfaces up to $90^\circ$. Our approach generates dynamically feasible trajectories to navigate and perch on a desired target location, while taking into account actuator and Field of View (FoV) constraints. By replanning in mid-flight, we take advantage of more accurate target localization increasing the perching maneuver's robustness to target localization or control errors. We leverage the Karush-Kuhn-Tucker (KKT) conditions to identify the compatibility between planning objectives and the visual sensing constraint during the planned maneuver. Furthermore, we experimentally identify the corresponding boundary conditions that maximizes the spatio-temporal target visibility during the perching maneuver. The proposed approach works on-board in real-time with significant computational constraints relying exclusively on cameras and an Inertial Measurement Unit (IMU). Experimental results validate the proposed approach and shows the higher success rate as well as increased target interception precision and accuracy with respect to a one-shot planning approach, while still retaining aggressive capabilities with flight envelopes that include large excursions from the hover position on inclined surfaces up to 90$^\circ$, angular speeds up to 750~deg/s, and accelerations up to 10~m/s$^2$.
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
本文提出了一项新颖的控制法,以使用尾随机翼无人驾驶飞机(UAV)进行准确跟踪敏捷轨迹,该轨道在垂直起飞和降落(VTOL)和向前飞行之间过渡。全球控制配方可以在整个飞行信封中进行操作,包括与Sideslip的不协调的飞行。显示了具有简化空气动力学模型的非线性尾尾动力学的差异平坦度。使用扁平度变换,提出的控制器结合了位置参考的跟踪及其导数速度,加速度和混蛋以及偏航参考和偏航速率。通过角速度进纸术语包含混蛋和偏航率参考,可以改善随着快速变化的加速度跟踪轨迹。控制器不取决于广泛的空气动力学建模,而是使用增量非线性动态反演(INDI)仅基于局部输入输出关系来计算控制更新,从而导致对简化空气动力学方程中差异的稳健性。非线性输入输出关系的精确反转是通过派生的平坦变换实现的。在飞行测试中对所得的控制算法进行了广泛的评估,在该测试中,它展示了准确的轨迹跟踪和挑战性敏捷操作,例如侧向飞行和转弯时的侵略性过渡。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
从教育和研究的角度来看,关于硬件的实验是机器人技术和控制的关键方面。在过去的十年中,已经介绍了许多用于车轮机器人的开源硬件和软件框架,主要采用独轮车和类似汽车的机器人的形式,目的是使更广泛的受众访问机器人并支持控制系统开发。独轮车通常很小且便宜,因此有助于在较大的机队中进行实验,但它们不适合高速运动。类似汽车的机器人更敏捷,但通常更大且更昂贵,因此需要更多的空间和金钱资源。为了弥合这一差距,我们介绍了Chronos,这是一种具有定制开源电子设备的新型汽车的1/28比例机器人,以及CRS是用于控制和机器人技术的开源软件框架。 CRS软件框架包括实施各种最新的算法,以进行控制,估计和多机构协调。通过这项工作,我们旨在更轻松地使用硬件,并减少启动新的教育和研究项目所需的工程时间。
translated by 谷歌翻译
本文提出了一种控制操纵器系统,掌握刚体有效载荷的方法,因此,由于外部施加的力与另一个自由浮动的刚体(具有不同的惯性特性)相同,因此组合系统的运动与另一个相同。这允许在1-G实验室环境中测试下的缩放航天器原型的零G仿真。由运动反馈和力量/力矩反馈组成的控制器调整了测试航天器的运动,以匹配飞行航天器的运动,即使后者具有灵活的附属物(例如太阳能电池板),而前者则是刚性的。整体系统的稳定性进行了分析研究,结果表明,只要两个航天器的惯性特性不同,并且尊重有效载荷与操纵器的惯性比率的上行,则该系统保持稳定。还提出了重要的实际问题,例如校准和对传感器噪声和量化的敏感性分析。
translated by 谷歌翻译
基于对高分辨率水下视觉调查的需求,本研究表明,现有的烟囱II自主水下车辆(AUV)适应完全悬停的AUV完全能够进行自主,近​​距离成像调查任务。本文重点介绍了AUV机动能力的增强(实现了改进的机动控制),实现了最新推进器分配算法的状态(允许最佳推进器分配和推进器冗余),以及在控制器之后的升级路径的开发以便于精确开发高分辨率成像任务所需的精致运动。为了便于车辆适应,开发了一种动态模型。提出了使用良好接受的公式,通过计算流体动力学和实际海上实验获得最初获得的动态模型系数的校准过程。还提出了耐压成像系统的房屋开发。该系统包括立体声相机和高功率闪电闪光灯,并作为专用AUV有效载荷装配。最后,在实际海床视觉调查任务中证明了平台的性能。
translated by 谷歌翻译
能够与环境进行物理相互作用的新型航空车的最新发展导致了新的应用,例如基于接触的检查。这些任务要求机器人系统将力与部分知名的环境交换,这可能包含不确定性,包括未知的空间变化摩擦特性和表面几何形状的不连续变化。找到对这些环境不确定性的强大控制策略仍然是一个公开挑战。本文提出了一种基于学习的自适应控制策略,用于航空滑动任务。特别是,基于当前控制信号,本体感受测量和触觉感应的策略,实时调整了标准阻抗控制器的收益。在学生教师学习设置中,该策略通过简化执行器动力进行了模拟培训。使用倾斜臂全向飞行器验证了所提出方法的现实性能。所提出的控制器结构结合了数据驱动和基于模型的控制方法,使我们的方法能够直接转移并不从模拟转移到真实平台。与微调状态的相互作用控制方法相比,我们达到了减少的跟踪误差和改善的干扰排斥反应。
translated by 谷歌翻译
Many aerial robotic applications require the ability to land on moving platforms, such as delivery trucks and marine research boats. We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The control laws generate velocity commands in all three dimensions, eliminating the need for a separate height controller. The method has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor environments, and compared to the other available methods, it has provided the fastest landing approach. Unlike many existing methods for landing on fast-moving platforms, this method does not rely on additional external setups, such as RTK, motion capture system, ground station, offboard processing, or communication with the vehicle, and it requires only the minimal set of hardware and localization sensors. The videos and source codes are also provided.
translated by 谷歌翻译
This paper introduces a structure-deformable land-air robot which possesses both excellent ground driving and flying ability, with smooth switching mechanism between two modes. The elaborate coupled dynamics model of the proposed robot is established, including rotors, chassis, especially the deformable structures. Furthermore, taking fusion locomotion and complex near-ground situations into consideration, a model based controller is designed for landing and mode switching under various harsh conditions, in which we realise the cooperation between fused two motion modes. The entire system is implemented in ADAMS/Simulink simulation and in practical. We conduct experiments under various complex scenarios. The results show our robot can accomplish land-air switching swiftly and smoothly, and the designed controller can effectively improve the landing flexibility and reliability.
translated by 谷歌翻译