我们考虑在非参数环境中对高阶希尔伯特空间的高阶估计估计。我们提出的估计器缩小了Bochner积分量的$ U $统计估计器,而不是希尔伯特领域的预指定目标元素。根据$ u $统计的内核的退化,我们构建了一致的收缩估计量,并具有快速的收敛速度,并产生了Oracle不平等,比较了$ u $统计估计器的风险及其收缩版。令人惊讶的是,我们表明,通过假设$ u $统计的内核完全退化而设计的收缩估计器也是一致的估计器,即使内核不是完全退化。这项工作涵盖并改进了Krikamol等人,2016年,JMLR和Zhou等,2019,JMVA,它仅处理繁殖的内核Hilbert Space中的平均元素和协方差操作员估计。我们还将结果专注于正常的平均估计,并表明对于$ d \ ge 3 $,拟议的估算器严格根据平均误差的样本平均值进行了改进。
translated by 谷歌翻译
内核方法是强大的学习方法,允许执行非线性数据分析。尽管它们很受欢迎,但在大数据方案中,它们的可伸缩性差。已经提出了各种近似方法,包括随机特征近似,以减轻问题。但是,除了内核脊回归外,大多数这些近似内核方法的统计一致性尚不清楚,其中已证明随机特征近似不仅在计算上有效,而且在统计上与最小值最佳收敛速率一致。在本文中,我们通过研究近似KPCA的计算和统计行为之间的权衡,研究了内核主成分分析(KPCA)中随机特征近似的功效。我们表明,与KPCA相比,与KPCA相比,与KPCA相比,近似KPCA在与基于内核函数基于其对相应的特征面积的投影相关的误差方面是有效的。该分析取决于伯恩斯坦类型的不平等现象,对自我偶和式希尔伯特·史克米特(Hilbert-Schmidt)操作员价值u统计量的运营商和希尔伯特·史克米特(Hilbert-Schmidt)规范取决于独立利益。
translated by 谷歌翻译
Over the last decade, an approach that has gained a lot of popularity to tackle non-parametric testing problems on general (i.e., non-Euclidean) domains is based on the notion of reproducing kernel Hilbert space (RKHS) embedding of probability distributions. The main goal of our work is to understand the optimality of two-sample tests constructed based on this approach. First, we show that the popular MMD (maximum mean discrepancy) two-sample test is not optimal in terms of the separation boundary measured in Hellinger distance. Second, we propose a modification to the MMD test based on spectral regularization by taking into account the covariance information (which is not captured by the MMD test) and prove the proposed test to be minimax optimal with a smaller separation boundary than that achieved by the MMD test. Third, we propose an adaptive version of the above test which involves a data-driven strategy to choose the regularization parameter and show the adaptive test to be almost minimax optimal up to a logarithmic factor. Moreover, our results hold for the permutation variant of the test where the test threshold is chosen elegantly through the permutation of the samples. Through numerical experiments on synthetic and real-world data, we demonstrate the superior performance of the proposed test in comparison to the MMD test.
translated by 谷歌翻译
我们研究了非参数脊的最小二乘的学习属性。特别是,我们考虑常见的估计人的估计案例,由比例依赖性内核定义,并专注于规模的作用。这些估计器内插数据,可以显示规模来通过条件号控制其稳定性。我们的分析表明,这是不同的制度,具体取决于样本大小,其尺寸与问题的平滑度之间的相互作用。实际上,当样本大小小于数据维度中的指数时,可以选择比例,以便学习错误减少。随着样本尺寸变大,总体错误停止减小但有趣地可以选择规模,使得噪声引起的差异仍然存在界线。我们的分析结合了概率,具有来自插值理论的许多分析技术。
translated by 谷歌翻译
我们在非标准空间上介绍了积极的确定核的新类别,这些空间完全是严格的确定性或特征。特别是,我们讨论了可分离的希尔伯特空间上的径向内核,并在Banach空间和强型负类型的度量空间上引入了广泛的内核。一般结果用于在可分离的$ l^p $空间和一组措施上提供明确的核类。
translated by 谷歌翻译
本文提供了具有固定步骤大小的线性随机近似(LSA)算法的有限时间分析,这是统计和机器学习中的核心方法。 LSA用于计算$ d $ - 二维线性系统的近似解决方案$ \ bar {\ mathbf {a}}} \ theta = \ bar {\ mathbf {b}} $ a}},\ bar {\ mathbf {b}})$只能通过(渐近)无偏见的观察来估算$ \ {(\ m athbf {a}(z_n),\ mathbf {b} {n \ in \ mathbb {n}} $。我们在这里考虑$ \ {z_n \} _ {n \ in \ mathbb {n}} $是i.i.d.序列或统一的几何千古马尔可夫链,并得出了$ p $ - 大小写的不等式和高概率界限,用于LSA及其polyak-ruppert平均版本定义的迭代。更确切地说,我们建立订单$(p \ alpha t _ {\ pereratatorName {mix}}}))^{1/2} d^{1/p} $在$ p $ - LSA的最后一个迭代的$ p $ - 。在此公式中,$ \ alpha $是该过程的步骤大小,$ t _ {\ operatatorName {mix}} $是基础链的混合时间($ t _ {\ operatotorname {mix {mix}} = 1 $ in I.I.D.设置中的1 $ )。然后,我们证明了迭代的polyak-ruppert平均序列上的有限时间实例依赖性边界。这些结果是明确的,从某种意义上说,我们获得的领先术语匹配局部渐近minimax限制,包括对参数$(d,t _ {\ operatorname {mix}})$的紧密依赖性在更高的术语中。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
In nonparametric independence testing, we observe i.i.d.\ data $\{(X_i,Y_i)\}_{i=1}^n$, where $X \in \mathcal{X}, Y \in \mathcal{Y}$ lie in any general spaces, and we wish to test the null that $X$ is independent of $Y$. Modern test statistics such as the kernel Hilbert-Schmidt Independence Criterion (HSIC) and Distance Covariance (dCov) have intractable null distributions due to the degeneracy of the underlying U-statistics. Thus, in practice, one often resorts to using permutation testing, which provides a nonasymptotic guarantee at the expense of recalculating the quadratic-time statistics (say) a few hundred times. This paper provides a simple but nontrivial modification of HSIC and dCov (called xHSIC and xdCov, pronounced ``cross'' HSIC/dCov) so that they have a limiting Gaussian distribution under the null, and thus do not require permutations. This requires building on the newly developed theory of cross U-statistics by Kim and Ramdas (2020), and in particular developing several nontrivial extensions of the theory in Shekhar et al. (2022), which developed an analogous permutation-free kernel two-sample test. We show that our new tests, like the originals, are consistent against fixed alternatives, and minimax rate optimal against smooth local alternatives. Numerical simulations demonstrate that compared to the full dCov or HSIC, our variants have the same power up to a $\sqrt 2$ factor, giving practitioners a new option for large problems or data-analysis pipelines where computation, not sample size, could be the bottleneck.
translated by 谷歌翻译
在关键的科学应用中,随着随机梯度算法培训的统计机器学习模型越来越多地部署。然而,在若干这样的应用中计算随机梯度是高度昂贵的甚至不可能。在这种情况下,使用衍生物或零顺序算法。迄今为止在统计机器学习文献中没有充分解决的一个重要问题是用实用又严谨的推理能力装备随机零顺序算法,以便我们不仅具有点估计或预测,而且还通过信心量化相关的不确定性间隔或集合。在这方面,在这项工作中,我们首先建立一个用于Polyak-ruppert平均随机零级梯度算法的中央极限定理。然后,我们提供出现在中央极限定理中的渐变协方差矩阵的在线估算,从而提供用于在零顺序设置中为参数估计(或预测)构建渐近有效的置信度(或间隔)的实际过程。
translated by 谷歌翻译
基于内核的测试提供了一个简单而有效的框架,该框架使用繁殖内核希尔伯特空间的理论设计非参数测试程序。在本文中,我们提出了新的理论工具,可用于在几种数据方案以及许多不同的测试问题中研究基于内核测试的渐近行为。与当前的方法不同,我们的方法避免使用冗长的$ u $和$ v $统计信息扩展并限制定理,该定理通常出现在文献中,并直接与希尔伯特空格上的随机功能合作。因此,我们的框架会导致对内核测试的简单明了的分析,只需要轻度的规律条件。此外,我们表明,通常可以通过证明我们方法所需的规律条件既足够又需要进行必要的规律条件来改进我们的分析。为了说明我们的方法的有效性,我们为有条件的独立性测试问题提供了一项新的内核测试,以及针对已知的基于内核测试的新分析。
translated by 谷歌翻译
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
在本文中,我们考虑了基于系数的正则分布回归,该回归旨在从概率措施中回归到复制的内核希尔伯特空间(RKHS)的实现响应(RKHS),该响应将正则化放在系数上,而内核被假定为无限期的。 。该算法涉及两个采样阶段,第一阶段样本由分布组成,第二阶段样品是从这些分布中获得的。全面研究了回归函数的不同规律性范围内算法的渐近行为,并通过整体操作员技术得出学习率。我们在某些温和条件下获得最佳速率,这与单级采样的最小最佳速率相匹配。与文献中分布回归的内核方法相比,所考虑的算法不需要内核是对称的和阳性的半明确仪,因此为设计不确定的内核方法提供了一个简单的范式,从而丰富了分布回归的主题。据我们所知,这是使用不确定核进行分配回归的第一个结果,我们的算法可以改善饱和效果。
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译
The implicit stochastic gradient descent (ISGD), a proximal version of SGD, is gaining interest in the literature due to its stability over (explicit) SGD. In this paper, we conduct an in-depth analysis of the two modes of ISGD for smooth convex functions, namely proximal Robbins-Monro (proxRM) and proximal Poylak-Ruppert (proxPR) procedures, for their use in statistical inference on model parameters. Specifically, we derive nonasymptotic point estimation error bounds of both proxRM and proxPR iterates and their limiting distributions, and propose on-line estimators of their asymptotic covariance matrices that require only a single run of ISGD. The latter estimators are used to construct valid confidence intervals for the model parameters. Our analysis is free of the generalized linear model assumption that has limited the preceding analyses, and employs feasible procedures. Our on-line covariance matrix estimators appear to be the first of this kind in the ISGD literature.* Equal contribution 1 Kakao Entertainment Corp.
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
在这项工作中,我们通过alpha log-determinant(log-det)在两个不同的环境中的Hilbert-schmidt操作员之间的alpha log-determinant(log-det)差异介绍了正式化的kullback-leibler和r \'enyi的分歧(log-det)差异以及在繁殖内核希尔伯特空间(RKHS)上定义的高斯措施; (ii)具有平方的可集成样品路径的高斯工艺。对于特征性内核,第一个设置导致在完整的,可分开的度量空间上进行任意borel概率度量之间的差异。我们表明,Hilbert-Schmidt Norm中的Alpha Log-Det差异是连续的,这使我们能够将大量定律应用于希尔伯特太空值的随机变量。因此,我们表明,在这两种情况下,都可以使用有限的依赖性gram矩阵/高斯措施和有限的样本数据来始终如一地从其有限维版本中始终有效地估算其有限差异版本在所有情况下,无独立的}样品复杂性。 RKHS方法论在两种情况下的理论分析中都起着核心作用。数值实验说明了数学公式。
translated by 谷歌翻译
我们解决了条件平均嵌入(CME)的内核脊回归估算的一致性,这是给定$ y $ x $的条件分布的嵌入到目标重现内核hilbert space $ hilbert space $ hilbert Space $ \ Mathcal {H} _y $ $ $ $ 。 CME允许我们对目标RKHS功能的有条件期望,并已在非参数因果和贝叶斯推论中使用。我们解决了错误指定的设置,其中目标CME位于Hilbert-Schmidt操作员的空间中,该操作员从$ \ Mathcal {H} _X _x $和$ L_2 $和$ \ MATHCAL {H} _Y $ $之间的输入插值空间起作用。该操作员的空间被证明是新定义的矢量值插值空间的同构。使用这种同构,我们在未指定的设置下为经验CME估计量提供了一种新颖的自适应统计学习率。我们的分析表明,我们的费率与最佳$ o(\ log n / n)$速率匹配,而无需假设$ \ Mathcal {h} _y $是有限维度。我们进一步建立了学习率的下限,这表明所获得的上限是最佳的。
translated by 谷歌翻译
The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic under the null, and thus it has an intractable limiting distribution. Hence, to design a level-$\alpha$ test, one usually selects the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since every permutation takes quadratic time. We propose the cross-MMD, a new quadratic-time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, the cross-MMD has a limiting standard Gaussian distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.
translated by 谷歌翻译