本文提供了具有固定步骤大小的线性随机近似(LSA)算法的有限时间分析,这是统计和机器学习中的核心方法。 LSA用于计算$ d $ - 二维线性系统的近似解决方案$ \ bar {\ mathbf {a}}} \ theta = \ bar {\ mathbf {b}} $ a}},\ bar {\ mathbf {b}})$只能通过(渐近)无偏见的观察来估算$ \ {(\ m athbf {a}(z_n),\ mathbf {b} {n \ in \ mathbb {n}} $。我们在这里考虑$ \ {z_n \} _ {n \ in \ mathbb {n}} $是i.i.d.序列或统一的几何千古马尔可夫链,并得出了$ p $ - 大小写的不等式和高概率界限,用于LSA及其polyak-ruppert平均版本定义的迭代。更确切地说,我们建立订单$(p \ alpha t _ {\ pereratatorName {mix}}}))^{1/2} d^{1/p} $在$ p $ - LSA的最后一个迭代的$ p $ - 。在此公式中,$ \ alpha $是该过程的步骤大小,$ t _ {\ operatatorName {mix}} $是基础链的混合时间($ t _ {\ operatotorname {mix {mix}} = 1 $ in I.I.D.设置中的1 $ )。然后,我们证明了迭代的polyak-ruppert平均序列上的有限时间实例依赖性边界。这些结果是明确的,从某种意义上说,我们获得的领先术语匹配局部渐近minimax限制,包括对参数$(d,t _ {\ operatorname {mix}})$的紧密依赖性在更高的术语中。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space. Focusing on a stochastic query model that provides noisy evaluations of the operator, we analyze a variance-reduced stochastic approximation scheme, and establish non-asymptotic bounds for both the operator defect and the estimation error, measured in an arbitrary semi-norm. In contrast to worst-case guarantees, our bounds are instance-dependent, and achieve the local asymptotic minimax risk non-asymptotically. For linear operators, contractivity can be relaxed to multi-step contractivity, so that the theory can be applied to problems like average reward policy evaluation problem in reinforcement learning. We illustrate the theory via applications to stochastic shortest path problems, two-player zero-sum Markov games, as well as policy evaluation and $Q$-learning for tabular Markov decision processes.
translated by 谷歌翻译
Q学习长期以来一直是最受欢迎的强化学习算法之一,几十年来,Q学习的理论分析一直是一个活跃的研究主题。尽管对Q-学习的渐近收敛分析的研究具有悠久的传统,但非肿瘤收敛性直到最近才受到积极研究。本文的主要目的是通过控制系统的观点研究马尔可夫观察模型下异步Q学习的新有限时间分析。特别是,我们引入了Q学习的离散时间变化的开关系统模型,并减少了分析的步骤尺寸,这显着改善了使用恒定步骤尺寸的开关系统分析的最新开发,并导致\(\(\)(\) Mathcal {o} \ left(\ sqrt {\ frac {\ log k} {k}}} \ right)\)\)\)\)\)\)\)\)与大多数艺术状态相当或更好。同时,新应用了使用类似转换的技术,以避免通过减小的步骤尺寸提出的分析中的难度。提出的分析带来了其他见解,涵盖了不同的方案,并提供了新的简化模板,以通过其独特的连接与离散时间切换系统的独特联系来加深我们对Q学习的理解。
translated by 谷歌翻译
The implicit stochastic gradient descent (ISGD), a proximal version of SGD, is gaining interest in the literature due to its stability over (explicit) SGD. In this paper, we conduct an in-depth analysis of the two modes of ISGD for smooth convex functions, namely proximal Robbins-Monro (proxRM) and proximal Poylak-Ruppert (proxPR) procedures, for their use in statistical inference on model parameters. Specifically, we derive nonasymptotic point estimation error bounds of both proxRM and proxPR iterates and their limiting distributions, and propose on-line estimators of their asymptotic covariance matrices that require only a single run of ISGD. The latter estimators are used to construct valid confidence intervals for the model parameters. Our analysis is free of the generalized linear model assumption that has limited the preceding analyses, and employs feasible procedures. Our on-line covariance matrix estimators appear to be the first of this kind in the ISGD literature.* Equal contribution 1 Kakao Entertainment Corp.
translated by 谷歌翻译
我们在具有Martingale差异噪声的可实现的时间序列框架中学习正方形损失。我们的主要结果是一个快速率的多余风险结合,这表明每当轨迹超收缩条件成立时,依赖数据的最小二乘估计器的风险与燃烧时间后的IID速率订单匹配。相比之下,从依赖数据中学习的许多现有结果都具有有效的样本量,即使在燃烧时间之后,有效的样本量也被基础过程的混合时间降低。此外,我们的结果允许协变量过程表现出远距离相关性,这些相关性大大弱于几何牙齿。我们将这种现象学习称为几乎没有混合的方式,并为其示出了几个示例:$ l^2 $和$ l^{2+\ epsilon} $ norms的有界函数类是等效的,有限的有限态Markov链,各种参数模型,以及一个无限尺寸$ \ ell^2(\ mathbb {n})$椭圆形的广阔家族。通过将我们的主要结果实例化,以使用广义线性模型过渡对非线性动力学的系统识别,我们仅在多项式燃烧时间后获得了几乎最小的最佳超量风险。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
本文涉及由马尔可夫噪声驱动的随机近似的收敛和渐近统计:$$ \ theta_ {n + 1} = \ theta_n + \ alpha_ {n + 1} f(\ theta_n,\ phi_ {n + 1})\, ,\ quad n \ ge 0,$$,其中每个$ \ theta_n \ in \ re ^ d $,$ \ {\ phi_n \} $是一般状态空间x上的马尔可夫链,静止分配$ \ pi $和$ f:\ re ^ d \ times \ text {x} \ to \ re ^ d $。除了在$ f $的标准lipschitz边界,以及消失的步骤大小序列$ \ {\ alpha_n \ \} $的条件外,假设相关ode是全局渐近稳定的静止点表示$ \ theta ^ * $ ,其中$ \ bar f(\ theta)= e [f(\ theta,\ phi)] $ with $ \ phi \ sim \ pi $。而且,ode @ $ \ infty $ virect with advoore字段,$$ \ bar f_ \ idty(\ theta):= \ lim_ {r \ to \ infty} r ^ { - 1} \ bar f(r \ theta)\ ,, \ qquad \ theta \ in \ re ^ d,$$是渐近稳定的。主要贡献总结如下:(i)如果$ \ phi $是几何ergodic,则序列$ \ theta $是融合的,并且在$ f $兼容兼容的界限。剩余的结果是在马尔可夫链的更强大假设下建立:Donsker-varadhan Lyapunov漂移条件的稍微弱版本(DV3)。 (ii)为联合过程$ \ {\ theta_n,\ phi_n \} $构建Lyapunov函数,这意味着$ \ {\ theta_n \} $ in $ l_4 $的融合。 (iii)建立了功能性CLT,以及归一化误差$ z_n:=(\ theta_n- \ theta ^ *)/ \ sqrt {\ alpha_n} $的常规一维CLT。时刻界限结合了CLT暗示了归一化协方差的收敛,$$ \ lim_ {n \ to \ infty} e [z_n z_n ^ t] = \ sigma_ \ theta,$$在$ \ sigma_ \ theta $ where asbptotic协方差出现在CLT中。 (iv)提供了一个例子,其中马尔可夫链$ \ phi $是几何ergodic,但它不满足(dv3)。虽然算法收敛,但第二个时刻是无限的。
translated by 谷歌翻译
我们证明了连续和离散时间添加功能的浓度不平等和相关的PAC界限,用于可能是多元,不可逆扩散过程的无界函数。我们的分析依赖于通过泊松方程的方法,使我们能够考虑一系列非常广泛的指数性千古过程。这些结果增加了现有的浓度不平等,用于扩散过程的加性功能,这些功能仅适用于有界函数或从明显较小的类别中的过程的无限函数。我们通过两个截然不同的区域的例子来证明这些指数不平等的力量。考虑到在稀疏性约束下可能具有高维参数非线性漂移模型,我们应用连续的时间浓度结果来验证套索估计的受限特征值条件,这对于甲骨文不平等的推导至关重要。离散添加功能的结果用于研究未经调整的Langevin MCMC算法,用于采样中等重尾密度$ \ pi $。特别是,我们为多项式增长功能$ f $的样品蒙特卡洛估计量$ \ pi(f)提供PAC边界,以量化足够的样本和阶梯尺寸,以在规定的边距内近似具有很高的可能性。
translated by 谷歌翻译
We study non-parametric estimation of the value function of an infinite-horizon $\gamma$-discounted Markov reward process (MRP) using observations from a single trajectory. We provide non-asymptotic guarantees for a general family of kernel-based multi-step temporal difference (TD) estimates, including canonical $K$-step look-ahead TD for $K = 1, 2, \ldots$ and the TD$(\lambda)$ family for $\lambda \in [0,1)$ as special cases. Our bounds capture its dependence on Bellman fluctuations, mixing time of the Markov chain, any mis-specification in the model, as well as the choice of weight function defining the estimator itself, and reveal some delicate interactions between mixing time and model mis-specification. For a given TD method applied to a well-specified model, its statistical error under trajectory data is similar to that of i.i.d. sample transition pairs, whereas under mis-specification, temporal dependence in data inflates the statistical error. However, any such deterioration can be mitigated by increased look-ahead. We complement our upper bounds by proving minimax lower bounds that establish optimality of TD-based methods with appropriately chosen look-ahead and weighting, and reveal some fundamental differences between value function estimation and ordinary non-parametric regression.
translated by 谷歌翻译
We provide results that exactly quantify how data augmentation affects the convergence rate and variance of estimates. They lead to some unexpected findings: Contrary to common intuition, data augmentation may increase rather than decrease the uncertainty of estimates, such as the empirical prediction risk. Our main theoretical tool is a limit theorem for functions of randomly transformed, high-dimensional random vectors. The proof draws on work in probability on noise stability of functions of many variables. The pathological behavior we identify is not a consequence of complex models, but can occur even in the simplest settings -- one of our examples is a ridge regressor with two parameters. On the other hand, our results also show that data augmentation can have real, quantifiable benefits.
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
我们在$ \ Gamma $ -diScounted MDP中使用Polyak-Ruppert平均(A.K.A.,平均Q-Leaning)进行同步Q学习。我们为平均迭代$ \ bar {\ boldsymbol {q}}建立渐近常态。此外,我们展示$ \ bar {\ boldsymbol {q}} _ t $实际上是一个常规的渐近线性(RAL)估计值,用于最佳q-value函数$ \ boldsymbol {q} ^ * $与最有效的影响功能。它意味着平均Q学习迭代在所有RAL估算器之间具有最小的渐近方差。此外,我们为$ \ ell _ {\ infty} $错误$ \ mathbb {e} \ | \ | \ bar {\ boldsymbol {q}} _ t- \ boldsymbol {q} ^ *} ^ *} _ {\ idty} $,显示它与实例相关的下限以及最佳最低限度复杂性下限。作为一个副产品,我们发现Bellman噪音具有var-gaussian坐标,具有方差$ \ mathcal {o}((1- \ gamma)^ {-1})$而不是现行$ \ mathcal {o}((1- \ Gamma)^ { - 2})$根据标准界限奖励假设。子高斯结果有可能提高许多R1算法的样本复杂性。简而言之,我们的理论分析显示平均Q倾斜在统计上有效。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
尽管U统计量在现代概率和统计学中存在着无处不在的,但其在依赖框架中的非反应分析可能被忽略了。在最近的一项工作中,已经证明了对统一的马尔可夫链的U级统计数据的新浓度不平等。在本文中,我们通过在三个不同的研究领域中进一步推动了当前知识状态,将这一理论突破付诸实践。首先,我们为使用MCMC方法估算痕量类积分运算符光谱的新指数不平等。新颖的是,这种结果适用于具有正征和负征值的内核,据我们所知,这是新的。此外,我们研究了使用成对损失函数和马尔可夫链样品的在线算法的概括性能。我们通过展示如何从任何在线学习者产生的假设序列中提取低风险假设来提供在线到批量转换结果。我们最终对马尔可夫链的不变度度量的密度进行了拟合优度测试的非反应分析。我们确定了一些类别的替代方案,基于$ L_2 $距离的测试具有规定的功率。
translated by 谷歌翻译