我们获得了具有重尾分布的独立和相同分布的随机变量的总和。我们的浓度结果与随机变量有关,其分布满足$ \ mathbb {p}(x> t)\ leq {\ rm e}^{ - i(t)} $,其中$ i:\ mathbb {r} \ rightarrow\ mathbb {r} $是一个增加的功能,$ i(t)/t \ rightArrow \ alpha \ in [0,\ infty)$ as $ t \ rightArrow \ rightArrow \ infty $。我们的主要定理不仅可以恢复一些现有结果,例如亚韦伯随机变量的总和的浓度,而且还可以为带有较重尾巴的随机变量的总和产生新的结果。我们表明,我们获得的浓度不平等足以为独立随机变量的总和提供较大的偏差结果。我们的基于标准截断参数的分析简化,统一和推广有关重尾随机变量的浓度和较大偏差的现有结果。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
我们呈现渐近最优的$(\ epsilon,\ delta)$差异私有机制,用于回答多个,自适应的$ \ delta $ -sursitive查询,解决Steinke和Ullman的猜想[2020]。我们的算法具有显着的优点,即它向每个查询增加独立的有界噪声,从而提供绝对误差。此外,我们在自适应数据分析中应用了我们的算法,获得了使用有限样本对某些基础分布的多个查询的改进保证。数值计算表明,界限噪声机制在许多标准设置中优于高斯机制。
translated by 谷歌翻译
在机器学习和高维统计领域的有限样本理论中,恒定指定的浓度不平等至关重要。我们获得了独立亚网络随机变量总和的更清晰和常数的浓度不平等,这导致了两个尾巴的混合物:尺寸的小偏差和较大偏差的小偏差。这些界限是新的,并通过更清晰的常数改善了现有的界限。另外,如果应保留斜体,则新的子韦布尔参数。请检查整个文本。还提出了提出的,它可以为随机变量(向量)恢复紧密浓度不平等。对于统计应用,我们给出了$ \ ell_2 $ - 估计系数在负二项式回归中的估计系数时,当重尾协变量是稀疏结构分布的亚weibull时,这是负二项式回归的新结果。在应用随机矩阵时,我们得出了Bai-Yin定理的非反应版本,用于具有指数尾巴边界的亚weibull条目。最后,通过为没有第二瞬间条件的对数截断的Z-测验器演示一个子静电区域,我们讨论并定义了独立观测值的sub-weibull类型稳健估计器$ \ {x_i \} _ {i = 1 }^{n} $没有指数矩条件。
translated by 谷歌翻译
Popular iterative algorithms such as boosting methods and coordinate descent on linear models converge to the maximum $\ell_1$-margin classifier, a.k.a. sparse hard-margin SVM, in high dimensional regimes where the data is linearly separable. Previous works consistently show that many estimators relying on the $\ell_1$-norm achieve improved statistical rates for hard sparse ground truths. We show that surprisingly, this adaptivity does not apply to the maximum $\ell_1$-margin classifier for a standard discriminative setting. In particular, for the noiseless setting, we prove tight upper and lower bounds for the prediction error that match existing rates of order $\frac{\|\wgt\|_1^{2/3}}{n^{1/3}}$ for general ground truths. To complete the picture, we show that when interpolating noisy observations, the error vanishes at a rate of order $\frac{1}{\sqrt{\log(d/n)}}$. We are therefore first to show benign overfitting for the maximum $\ell_1$-margin classifier.
translated by 谷歌翻译
统一测试是财产测试中最有研究的问题之一,其中许多已知的测试统计数据,包括基于计数碰撞,单例和经验电视距离的统计数据。众所周知,以$ 1- \ delta $概率为$ n = \ theta \ left(\ frac {\ sqrt {m {m {m) \ log(1/\ delta)}}} {\ epsilon^2} + \ frac {\ log(1/\ delta)} {\ epsilon^2} \ right)$,这是由经验性的电视测试器实现的。然而,在模拟中,这些理论分析具有误导性:在许多情况下,即使在所有参数的渐近制度中,它们也无法正确排序现有测试人员的性能,即$ 0 $或$ \ infty $。我们通过研究算法所需的\ emph {常数因子}来解释这一差异。我们表明,碰撞测试仪在均匀输入和非均匀输入之间的分离偏差数量中达到了急剧的最大常数。然后,我们根据Huber损失介绍了一个新的测试仪,并表明它不仅与此分离相匹配,而且还具有与该分离的高斯相对应的尾巴。这导致样本复杂性为$(1 + o(1))\ frac {\ sqrt {m \ log(1/\ delta)}}} {\ epsilon^2} $在该术语中,在此术语中,与此术语为主导所有其他现有测试人员。
translated by 谷歌翻译
我们调查了一定类别的功能不等式,称为弱Poincar的不等式,以使Markov链的收敛性与均衡相结合。我们表明,这使得SubGoom测量收敛界的直接和透明的推导出用于独立的Metropolis - Hastings采样器和用于棘手似然性的伪边缘方法,后者在许多实际设置中是子表芯。这些结果依赖于马尔可夫链之间的新量化比较定理。相关证据比依赖于漂移/较小化条件的证据更简单,并且所开发的工具允许我们恢复并进一步延长特定情况的已知结果。我们能够为伪边缘算法的实际使用提供新的见解,分析平均近似贝叶斯计算(ABC)的效果以及独立平均值的产品,以及研究与之相关的逻辑重量的情况粒子边缘大都市 - 黑斯廷斯(PMMH)。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
我们提供匹配的Under $ \ sigma ^ 2 / \ log(d / n)$的匹配的上下界限为最低$ \ ell_1 $ -norm插值器,a.k.a.基础追踪。我们的结果紧紧达到可忽略的术语,而且是第一个暗示噪声最小范围内插值的渐近一致性,因为各向同性特征和稀疏的地面真理。我们的工作对最低$ \ ell_2 $ -norm插值的“良性接收”进行了补充文献,其中才能在特征有效地低维时实现渐近一致性。
translated by 谷歌翻译
本文衍生了置信区间(CI)和时间统一的置信序列(CS),用于从有限观测值中估算未知平均值的经典问题。我们提出了一种衍生浓度界限的一般方法,可以看作是著名的切尔诺夫方法的概括(和改进)。它的核心是基于推导一类新的复合非负胸腔,通过投注和混合方法与测试的连接很强。我们展示了如何将这些想法扩展到无需更换的情况下,这是另一个经过深入研究的问题。在所有情况下,我们的界限都适应未知的差异,并且基于Hoeffding或经验的Bernstein不平等及其最近的Supermartingale概括,经验上大大优于现有方法。简而言之,我们为四个基本问题建立了一个新的最先进的问题:在有或没有替换的情况下进行采样时,CS和CI进行有限的手段。
translated by 谷歌翻译
我们在具有Martingale差异噪声的可实现的时间序列框架中学习正方形损失。我们的主要结果是一个快速率的多余风险结合,这表明每当轨迹超收缩条件成立时,依赖数据的最小二乘估计器的风险与燃烧时间后的IID速率订单匹配。相比之下,从依赖数据中学习的许多现有结果都具有有效的样本量,即使在燃烧时间之后,有效的样本量也被基础过程的混合时间降低。此外,我们的结果允许协变量过程表现出远距离相关性,这些相关性大大弱于几何牙齿。我们将这种现象学习称为几乎没有混合的方式,并为其示出了几个示例:$ l^2 $和$ l^{2+\ epsilon} $ norms的有界函数类是等效的,有限的有限态Markov链,各种参数模型,以及一个无限尺寸$ \ ell^2(\ mathbb {n})$椭圆形的广阔家族。通过将我们的主要结果实例化,以使用广义线性模型过渡对非线性动力学的系统识别,我们仅在多项式燃烧时间后获得了几乎最小的最佳超量风险。
translated by 谷歌翻译
我们提出了一种统一的技术,用于顺序估计分布之间的凸面分歧,包括内核最大差异等积分概率度量,$ \ varphi $ - 像Kullback-Leibler发散,以及最佳运输成本,例如Wassersein距离的权力。这是通过观察到经验凸起分歧(部分有序)反向半角分离的实现来实现的,而可交换过滤耦合,其具有这些方法的最大不等式。这些技术似乎是对置信度序列和凸分流的现有文献的互补和强大的补充。我们构建一个离线到顺序设备,将各种现有的离线浓度不等式转换为可以连续监测的时间均匀置信序列,在任意停止时间提供有效的测试或置信区间。得到的顺序边界仅在相应的固定时间范围内支付迭代对数价格,保留对问题参数的相同依赖性(如适用的尺寸或字母大小)。这些结果也适用于更一般的凸起功能,如负差分熵,实证过程的高度和V型统计。
translated by 谷歌翻译
我们重新审视耐受分发测试的问题。也就是说,给出来自未知分发$ P $超过$ \ {1,\ dots,n \} $的样本,它是$ \ varepsilon_1 $ -close到或$ \ varepsilon_2 $ -far从引用分发$ q $(总变化距离)?尽管过去十年来兴趣,但在极端情况下,这个问题很好。在无噪声设置(即,$ \ varepsilon_1 = 0 $)中,样本复杂性是$ \ theta(\ sqrt {n})$,强大的域大小。在频谱的另一端时,当$ \ varepsilon_1 = \ varepsilon_2 / 2 $时,样本复杂性跳转到勉强su​​blinear $ \ theta(n / \ log n)$。然而,非常少于中级制度。我们充分地表征了分发测试中的公差价格,作为$ N $,$ varepsilon_1 $,$ \ varepsilon_2 $,最多一个$ \ log n $ factor。具体来说,我们显示了\ [\ tilde \ theta \ left的样本复杂性(\ frac {\ sqrt {n}} {\ varepsilon_2 ^ {2}} + \ frac {n} {\ log n} \ cdot \ max \左\ {\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2},\ left(\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2} \右)^ {\!\!\!2} \ \ \} \右) ,\]提供两个先前已知的案例之间的顺利折衷。我们还为宽容的等价测试问题提供了类似的表征,其中$ p $和$ q $均未赘述。令人惊讶的是,在这两种情况下,对样本复杂性的主数量是比率$ \ varepsilon_1 / varepsilon_2 ^ 2 $,而不是更直观的$ \ varepsilon_1 / \ varepsilon_2 $。特别是技术兴趣是我们的下限框架,这涉及在以往的工作中处理不对称所需的新颖近似性理论工具,从而缺乏以前的作品。
translated by 谷歌翻译
本文研究了具有对抗性误差的强大一位压缩感应的二进制分类。假设该模型过度分配,并且感兴趣的参数有效稀疏。adaboost被考虑,并且通过其与MAX - $ \ ell_1 $ -Margin-Scressifir的关系,派生预测错误界限。开发的理论是一般的,并且允许重型的特征分布,只需要一个薄弱的时刻假设和抗浓缩条件。当特征满足小偏差下限时,示出了改善的收敛速率。特别是,结果提供了解释为什么内插对抗性噪声对于分类问题可以是无害的。模拟说明了所提出的理论。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
关于强盗算法最佳设计的许多文献都是基于最小化预期遗憾的基础。众所周知,在某些指数家庭中最佳的设计可以实现预期的遗憾,即以LAI-ROBBINS下降的速度在ARM游戏数量上进行对数增长。在本文中,我们表明,当人们使用这种优化的设计时,相关算法的遗憾分布必然具有非常沉重的尾巴,特别是cauchy分布的尾巴。此外,对于$ p> 1 $,遗憾分布的$ p $'瞬间增长速度要比多层型的速度快得多,尤其是作为ARM播放总数的力量。我们表明,优化的UCB强盗设计在另一种意义上也是脆弱的,即,当问题甚至略有指定时,遗憾的增长可能比传统理论所建议的要快得多。我们的论点是基于标准的量化想法,并表明最有可能的遗憾变得比预期的要大的方法是最佳手臂在前几只手臂比赛中返回低于平均水平的奖励,从而导致算法相信这一点手臂是最佳的。为了减轻暴露的脆弱性问题,我们表明可以修改UCB算法,以确保对错误指定的理想程度。在此过程中,我们还提供了UCB勘探数量与产生后悔分布的尾声之间的巨大权衡。
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译