本文研究了具有对抗性误差的强大一位压缩感应的二进制分类。假设该模型过度分配,并且感兴趣的参数有效稀疏。adaboost被考虑,并且通过其与MAX - $ \ ell_1 $ -Margin-Scressifir的关系,派生预测错误界限。开发的理论是一般的,并且允许重型的特征分布,只需要一个薄弱的时刻假设和抗浓缩条件。当特征满足小偏差下限时,示出了改善的收敛速率。特别是,结果提供了解释为什么内插对抗性噪声对于分类问题可以是无害的。模拟说明了所提出的理论。
translated by 谷歌翻译
Popular iterative algorithms such as boosting methods and coordinate descent on linear models converge to the maximum $\ell_1$-margin classifier, a.k.a. sparse hard-margin SVM, in high dimensional regimes where the data is linearly separable. Previous works consistently show that many estimators relying on the $\ell_1$-norm achieve improved statistical rates for hard sparse ground truths. We show that surprisingly, this adaptivity does not apply to the maximum $\ell_1$-margin classifier for a standard discriminative setting. In particular, for the noiseless setting, we prove tight upper and lower bounds for the prediction error that match existing rates of order $\frac{\|\wgt\|_1^{2/3}}{n^{1/3}}$ for general ground truths. To complete the picture, we show that when interpolating noisy observations, the error vanishes at a rate of order $\frac{1}{\sqrt{\log(d/n)}}$. We are therefore first to show benign overfitting for the maximum $\ell_1$-margin classifier.
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
我们开发机器以设计有效的可计算和一致的估计,随着观察人数而达到零的估计误差,因为观察的次数增长,当面对可能损坏的答复,除了样本的所有品,除了每种量之外的ALL。作为具体示例,我们调查了两个问题:稀疏回归和主成分分析(PCA)。对于稀疏回归,我们实现了最佳样本大小的一致性$ n \ gtrsim(k \ log d)/ \ alpha ^ $和最佳错误率$ o(\ sqrt {(k \ log d)/(n \ cdot \ alpha ^ 2))$ N $是观察人数,$ D $是尺寸的数量,$ k $是参数矢量的稀疏性,允许在数量的数量中为逆多项式进行逆多项式样品。在此工作之前,已知估计是一致的,当Inliers $ \ Alpha $ IS $ O(1 / \ log \ log n)$,即使是(非球面)高斯设计矩阵时也是一致的。结果在弱设计假设下持有,并且在这种一般噪声存在下仅被D'Orsi等人最近以密集的设置(即一般线性回归)显示。 [DNS21]。在PCA的上下文中,我们在参数矩阵上的广泛尖端假设下获得最佳错误保证(通常用于矩阵完成)。以前的作品可以仅在假设下获得非琐碎的保证,即与最基于的测量噪声以$ n $(例如,具有方差1 / n ^ 2 $的高斯高斯)。为了设计我们的估算,我们用非平滑的普通方(如$ \ ell_1 $ norm或核规范)装备Huber丢失,并以一种新的方法来分析损失的新方法[DNS21]的方法[DNS21]。功能。我们的机器似乎很容易适用于各种估计问题。
translated by 谷歌翻译
在本文中,我们研究了经验$ \ ell_2 $最小化(erm)的估计性能(标准)阶段检索(NPR),由$ y_k = | \ alpha_k^*x_0 |^2+\ eta_k $,或嘈杂的广义阶段检索(NGPR)以$ y_k = x_0^*a_kx_0 + \ eta_k $,其中$ x_0 \ in \ mathbb {k}^d $是所需的信号,$ n $是样本大小,$ \ eta =(\ eta_1,...,\ eta_n)^\ top $是噪声向量。我们在不同的噪声模式下建立了新的错误界限,我们的证明对$ \ mathbb {k} = \ mathbb {r} $和$ \ mathbb {k} = \ mathbb {c} $有效。在任意噪声向量$ \ eta $下的NPR中,我们得出了一个新的错误$ o \ big(\ | \ eta \ | _ \ | _ \ infty \ sqrt {\ frac {d} {1}^\ top \ eta |} {n} \ big)$,它比当前已知的一个$ o \ big(\ frac {\ | \ eTa \ |} {\ sqrt {\ sqrt {n}} \ big big )$在许多情况下。在NGPR中,我们显示了$ o \ big(\ | \ eta \ | \ frac {\ sqrt {d}}} {n} {n} \ big)$ for nutary $ \ eta $。在这两个问题上,任意噪声的范围立即引起$ \ tilde {o}(\ sqrt {\ frac {d} {n}}}})$,用于次高斯或次指数随机噪声,带有一些常规但不可吻的去除或削弱的假设(例如,独立或均值均值的条件)。此外,我们首次尝试在假定$ l $ -th时刻的重尾随机噪声下进行ERM。为了实现偏见和差异之间的权衡,我们截断了响应并提出了相应的稳健ERM估计器,该估计量具有保证$ \ tilde {o} \ big(\ big [\ sqrt {\ frac {\ frac {d}) {n}} \ big]^{1-1/l} \ big)$在NPR,NGPR中。所有错误都直接扩展到等级$ r $矩阵恢复的更普遍的问题,这些结果得出的结论是,全级框架$ \ {a_k \} _ {k = 1}^n $ in ngpr是比级别1帧$ \ {\ alpha_k \ alpha_k^*\} _ {k = 1}^n $在npr中更强大。提出了广泛的实验结果,以说明我们的理论发现。
translated by 谷歌翻译
在机器学习和高维统计领域的有限样本理论中,恒定指定的浓度不平等至关重要。我们获得了独立亚网络随机变量总和的更清晰和常数的浓度不平等,这导致了两个尾巴的混合物:尺寸的小偏差和较大偏差的小偏差。这些界限是新的,并通过更清晰的常数改善了现有的界限。另外,如果应保留斜体,则新的子韦布尔参数。请检查整个文本。还提出了提出的,它可以为随机变量(向量)恢复紧密浓度不平等。对于统计应用,我们给出了$ \ ell_2 $ - 估计系数在负二项式回归中的估计系数时,当重尾协变量是稀疏结构分布的亚weibull时,这是负二项式回归的新结果。在应用随机矩阵时,我们得出了Bai-Yin定理的非反应版本,用于具有指数尾巴边界的亚weibull条目。最后,通过为没有第二瞬间条件的对数截断的Z-测验器演示一个子静电区域,我们讨论并定义了独立观测值的sub-weibull类型稳健估计器$ \ {x_i \} _ {i = 1 }^{n} $没有指数矩条件。
translated by 谷歌翻译
我们研究了称为“乐观速率”(Panchenko 2002; Srebro等,2010)的统一收敛概念,用于与高斯数据的线性回归。我们的精致分析避免了现有结果中的隐藏常量和对数因子,这已知在高维设置中至关重要,特别是用于了解插值学习。作为一个特殊情况,我们的分析恢复了Koehler等人的保证。(2021年),在良性过度的过度条件下,严格地表征了低规范内插器的人口风险。但是,我们的乐观速度绑定还分析了具有任意训练错误的预测因子。这使我们能够在随机设计下恢复脊和套索回归的一些经典统计保障,并有助于我们在过度参数化制度中获得精确了解近端器的过度风险。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
我们提供匹配的Under $ \ sigma ^ 2 / \ log(d / n)$的匹配的上下界限为最低$ \ ell_1 $ -norm插值器,a.k.a.基础追踪。我们的结果紧紧达到可忽略的术语,而且是第一个暗示噪声最小范围内插值的渐近一致性,因为各向同性特征和稀疏的地面真理。我们的工作对最低$ \ ell_2 $ -norm插值的“良性接收”进行了补充文献,其中才能在特征有效地低维时实现渐近一致性。
translated by 谷歌翻译
In this paper, we study the trace regression when a matrix of parameters B* is estimated via the convex relaxation of a rank-regularized regression or via regularized non-convex optimization. It is known that these estimators satisfy near-optimal error bounds under assumptions on the rank, coherence, and spikiness of B*. We start by introducing a general notion of spikiness for B* that provides a generic recipe to prove the restricted strong convexity of the sampling operator of the trace regression and obtain near-optimal and non-asymptotic error bounds for the estimation error. Similar to the existing literature, these results require the regularization parameter to be above a certain theory-inspired threshold that depends on observation noise that may be unknown in practice. Next, we extend the error bounds to cases where the regularization parameter is chosen via cross-validation. This result is significant in that existing theoretical results on cross-validated estimators (Kale et al., 2011; Kumar et al., 2013; Abou-Moustafa and Szepesvari, 2017) do not apply to our setting since the estimators we study are not known to satisfy their required notion of stability. Finally, using simulations on synthetic and real data, we show that the cross-validated estimator selects a near-optimal penalty parameter and outperforms the theory-inspired approach of selecting the parameter.
translated by 谷歌翻译
我们考虑与高斯数据的高维线性回归中的插值学习,并在类高斯宽度方面证明了任意假设类别中的内插器的泛化误差。将通用绑定到欧几里德常规球恢复了Bartlett等人的一致性结果。(2020)对于最小规范内插器,并确认周等人的预测。(2020)在高斯数据的特殊情况下,对于近乎最小常态的内插器。我们通过将其应用于单位来证明所界限的一般性,从而获得最小L1-NORM Interpoolator(基础追踪)的新型一致性结果。我们的结果表明,基于规范的泛化界限如何解释并用于分析良性过度装备,至少在某些设置中。
translated by 谷歌翻译
我们在随机特征矩阵的条件数上提供(高概率)界限。特别是,我们表明,如果复杂性比率$ \ frac {n} $ where $ n $是n $ with n $ wore $ n $是$ m $的数量,如$ \ log ^ {-1}( n)$或$ \ log(m)$,然后随机功能矩阵很好。该结果在没有正则化的情况下保持并且依赖于在随机特征矩阵的相关组件之间建立各种浓度界限。另外,我们在随机特征矩阵的受限等距常数上获得界限。我们证明了使用随机特征矩阵的回归问题相关的风险表现出双重下降现象,并且这是条件数的双缩小行为的效果。风险范围包括使用最小二乘问题的underParamedAimed设置和使用最小规范插值问题或稀疏回归问题的过次参数化设置。对于最小二乘或稀疏的回归案例,我们表明风险降低为$ M $和$ N $增加,即使在存在有限或随机噪声时也是如此。风险绑定与文献中的最佳缩放匹配,我们的结果中的常量是显式的,并且独立于数据的维度。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
在本文中,我们提出了一种均匀抖动的一位量化方案,以进行高维统计估计。该方案包含截断,抖动和量化,作为典型步骤。作为规范示例,量化方案应用于三个估计问题:稀疏协方差矩阵估计,稀疏线性回归和矩阵完成。我们研究了高斯和重尾政权,假定重尾数据的基本分布具有有限的第二或第四刻。对于每个模型,我们根据一位量化的数据提出新的估计器。在高斯次级政权中,我们的估计器达到了对数因素的最佳最小速率,这表明我们的量化方案几乎没有额外的成本。在重尾状态下,虽然我们的估计量基本上变慢,但这些结果是在这种单位量化和重型尾部设置中的第一个结果,或者比现有可比结果表现出显着改善。此外,我们为一位压缩传感和一位矩阵完成的问题做出了巨大贡献。具体而言,我们通过凸面编程将一位压缩感传感扩展到次高斯甚至是重尾传感向量。对于一位矩阵完成,我们的方法与标准似然方法基本不同,并且可以处理具有未知分布的预量化随机噪声。提出了有关合成数据的实验结果,以支持我们的理论分析。
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
元学习或学习学习,寻求设计算法,可以利用以前的经验快速学习新技能或适应新环境。表示学习 - 用于执行元学习的关键工具 - 了解可以在多个任务中传输知识的数据表示,这在数据稀缺的状态方面是必不可少的。尽管最近在Meta-Leature的实践中感兴趣的兴趣,但缺乏元学习算法的理论基础,特别是在学习可转让陈述的背景下。在本文中,我们专注于多任务线性回归的问题 - 其中多个线性回归模型共享常见的低维线性表示。在这里,我们提供了可提供的快速,采样高效的算法,解决了(1)的双重挑战,从多个相关任务和(2)将此知识转移到新的,看不见的任务中的常见功能。两者都是元学习的一般问题的核心。最后,我们通过在学习这些线性特征的样本复杂性上提供信息定理下限来补充这些结果。
translated by 谷歌翻译