Current practice in interpretable machine learning often focuses on explaining the final model trained from data, e.g., by using the Shapley additive explanations (SHAP) method. The recently developed Shapley variable importance cloud (ShapleyVIC) extends the current practice to a group of "nearly optimal models" to provide comprehensive and robust variable importance assessments, with estimated uncertainty intervals for a more complete understanding of variable contributions to predictions. ShapleyVIC was initially developed for applications with traditional regression models, and the benefits of ShapleyVIC inference have been demonstrated in real-life prediction tasks using the logistic regression model. However, as a model-agnostic approach, ShapleyVIC application is not limited to such scenarios. In this work, we extend ShapleyVIC implementation for machine learning models to enable wider applications, and propose it as a useful complement to the current SHAP analysis to enable more trustworthy applications of these black-box models.
translated by 谷歌翻译
风险评分广泛用于临床决策,通常由逻辑回归模型产生。基于机器学习的方法可以很好地识别重要的预测因子,但这种“黑匣子”变量选择限制解释性,并且从单个模型评估的可变重要性可以偏置。我们提出了一种强大而可解释的可解释的可解释选择方法,使用最近开发的福利可变重要性云(福利维奇)占模型的可变性。我们的方法评估和可视化了深入推理和透明变量选择的总变量贡献,并过滤出非重要贡献者来简化模型构建步骤。我们从可变贡献中获得了一个集合变量排名,这很容易与自动化和模块化的风险分数发生器,自动摩托,以方便的实现。在对早期死亡或意外再入住的研究中,福糖选定了6个候选变量中的6个,以创建一个良好的性能,从机器学习的排名到一个16变量模型具有类似的性能。
translated by 谷歌翻译
目的:Shapley添加说明(SHAP)是一种流行的事后技术,用于解释黑匣子模型。尽管已经对数据不平衡对预测模型的影响进行了广泛的研究,但在基于Shap的模型解释方面,它在很大程度上仍然未知。这项研究试图研究数据不平衡对深度学习模型的Shap解释的影响,并提出一种减轻这些影响的策略。材料和方法:我们建议在解释黑匣子模型时在背景中调整类别的类别,并在形状中进行解释数据。我们的数据平衡策略是构成背景数据和解释数据,同等分布。为了评估数据调整对模型解释的影响,我们建议将Beeswarm图用作定性工具,以识别“异常”解释伪像,并定量测试可变重要性和预测能力之间的一致性。我们在一项实证研究中证明了我们提出的方法,该研究使用医学信息MART(MIMIC-III)数据预测住院死亡率和多层概念。结果:使用数据平衡策略将使我们能够减少蜜蜂图图中的工件数量,从而减轻数据不平衡的负面影响。此外,通过平衡策略,来自相应重要性排名的顶级变量表明歧视能力得到了改善。讨论和结论:我们的发现表明,平衡的背景和解释数据可以帮助减少偏斜的数据分布引起的解释结果中的噪声,并提高可变重要性排名的可靠性。此外,这些平衡程序提高了在临床应用中识别出异常特征的患者方面的可能性。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
与经典的统计学习方法相比,机器和深度学习生存模型表现出相似甚至改进事件的预测能力,但太复杂了,无法被人类解释。有几种模型不合时宜的解释可以克服这个问题。但是,没有一个直接解释生存函数预测。在本文中,我们介绍了Survhap(t),这是第一个允许解释生存黑盒模型的解释。它基于Shapley添加性解释,其理论基础稳定,并在机器学习从业人员中广泛采用。拟议的方法旨在增强精确诊断和支持领域的专家做出决策。关于合成和医学数据的实验证实,survhap(t)可以检测具有时间依赖性效果的变量,并且其聚集是对变量对预测的重要性的决定因素,而不是存活。 survhap(t)是模型不可屈服的,可以应用于具有功能输出的所有型号。我们在http://github.com/mi2datalab/survshap中提供了python中时间相关解释的可访问实现。
translated by 谷歌翻译
Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.
translated by 谷歌翻译
公平测试旨在减轻数据驱动的AI系统决策过程中的意外歧视。当AI模型为仅根据受保护属性(例如年龄和种族)区分的两个不同的个体做出不同的决定时,可能会发生个人歧视。这样的实例揭示了偏见的AI行为,被称为个人歧视实例(IDI)。在本文中,我们提出了一种选择初始种子以生成IDI进行公平测试的方法。先前的研究主要使用随机的初始种子来实现这一目标。但是,这个阶段至关重要,因为这些种子是后续IDIS生成的基础。我们称我们提出的种子选择方法I&D。它产生了大量的初始IDI,表现出极大的多样性,旨在提高公平测试的整体性能。我们的实证研究表明,I&D能够就四种最先进的种子生成方法产生更多的IDI,平均产生1.68倍的IDI。此外,我们比较I&D在训练机器学习模型中的使用,并发现与最先进的ART相比,使用I&D将剩余IDI的数量减少了29%,因此表明I&D有效地改善了模型公平性
translated by 谷歌翻译
学术研究和金融业最近引起了机器学习算法,因为他们的权力解决了复杂的学习任务。然而,在公司的默认预测领域,缺乏可解释性阻止了广泛采用了黑箱类型的模型。为了克服这一缺点并保持黑盒的高性能,本文依赖于模型 - 无症方法。累计的本地效果和福芙值用于塑造预测因子对默认可能性的影响,并根据其对模型结果的贡献进行排名。与三种标准判别模型相比,通过两个机器学习算法(极端梯度升压和前馈神经网络)实现了预测。结果表明,我们对意大利中小企业制造业的分析通过极端梯度提升算法从整体最高分类功率的优势,而不放弃丰富的解释框架。
translated by 谷歌翻译
基于树的算法,如随机森林和渐变增强树,继续成为多学科最受欢迎和强大的机器学习模型之一。估计基于树模型中特征的影响的传统智慧是测量\脑缩小{节目减少损失函数},(i)仅收集全球重要性措施和(ii)遭受严重影响偏见。条件特征贡献(CFC)通过遵循决策路径并将模型的预期输出的更改归因于路径的每个功能,提供对预测的\ yourceit {local},逐个案例说明。但是,Lundberg等人。指出了CFC的潜在偏见,这取决于与树根的距离。现在是现在非常受欢迎的替代方案,福芙添加剂解释(Shap)值似乎减轻了这种偏差,但计算得多更昂贵。在这里,我们有助于对两种公开可用的分类问题的两种方法计算的解释进行了彻底的比较,以便向当前研究人员提供数据驱动算法的建议。对于随机森林,我们发现本地和全球形状值和CFC分数的极高相似之处和相关性,导致非常相似的排名和解释。类似的结论对于使用全局特征重要性分数的保真度作为与每个特征相关的预测电力的代理。
translated by 谷歌翻译
本文研究了与可解释的AI(XAI)实践有关的两个不同但相关的问题。机器学习(ML)在金融服务中越来越重要,例如预批准,信用承销,投资以及各种前端和后端活动。机器学习可以自动检测培训数据中的非线性和相互作用,从而促进更快,更准确的信用决策。但是,机器学习模型是不透明的,难以解释,这是建立可靠技术所需的关键要素。该研究比较了各种机器学习模型,包括单个分类器(逻辑回归,决策树,LDA,QDA),异质集合(Adaboost,随机森林)和顺序神经网络。结果表明,整体分类器和神经网络的表现优于表现。此外,使用基于美国P2P贷款平台Lending Club提供的开放式访问数据集评估了两种先进的事后不可解释能力 - 石灰和外形来评估基于ML的信用评分模型。对于这项研究,我们还使用机器学习算法来开发新的投资模型,并探索可以最大化盈利能力同时最大程度地降低风险的投资组合策略。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
由于黑匣子的解释越来越多地用于在高赌注设置中建立模型可信度,重要的是确保这些解释准确可靠。然而,事先工作表明,最先进的技术产生的解释是不一致的,不稳定的,并且提供了对它们的正确性和可靠性的极少了解。此外,这些方法也在计算上效率低下,并且需要显着的超参数调谐。在本文中,我们通过开发一种新的贝叶斯框架来涉及用于产生当地解释以及相关的不确定性来解决上述挑战。我们将本框架实例化以获取贝叶斯版本的石灰和kernelshap,其为特征重要性输出可靠的间隔,捕获相关的不确定性。由此产生的解释不仅使我们能够对其质量进行具体推论(例如,有95%的几率是特征重要性在给定范围内),但也是高度一致和稳定的。我们执行了一个详细的理论分析,可以利用上述不确定性来估计对样品的扰动有多少,以及如何进行更快的收敛。这项工作首次尝试在一次拍摄中通过流行的解释方法解决几个关键问题,从而以计算上有效的方式产生一致,稳定和可靠的解释。具有多个真实世界数据集和用户研究的实验评估表明,提出的框架的功效。
translated by 谷歌翻译
口服食物挑战(OFC)对于准确诊断患者的食物过敏至关重要。但是,患者不愿接受OFC,对于那些这样做的患者,在农村/社区医疗保健环境中,对过敏症患者的使用率有限。通过机器学习方法对OFC结果的预测可以促进在家中食品过敏原的删除,在OFC中改善患者和医师的舒适度,并通过最大程度地减少执行的OFC的数量来节省医疗资源。临床数据是从共同接受1,284个OFC的1,12例患者那里收集的,包括临床因素,包括血清特异性IgE,总IgE,皮肤刺测试(SPTS),症状,性别和年龄。使用这些临床特征,构建了机器学习模型,以预测花生,鸡蛋和牛奶挑战的结果。每种过敏原的最佳性能模型是使用凹入和凸内核(LUCCK)方法创建的,该方法在曲线(AUC)(AUC)下分别用于花生,鸡蛋和牛奶OFC预测为0.76、0.68和0.70, 。通过Shapley添加说明(SHAP)的模型解释表明,特定的IgE以及SPTS的Wheal和Flare值高度预测了OFC结果。该分析的结果表明,机器学习有可能预测OFC结果,并揭示了相关的临床因素进行进一步研究。
translated by 谷歌翻译
机器学习(ml)越来越多地用于通知高赌注决策。作为复杂的ML模型(例如,深神经网络)通常被认为是黑匣子,已经开发了丰富的程序,以阐明其内在的工作和他们预测来的方式,定义“可解释的AI”( xai)。显着性方法根据“重要性”的某种尺寸等级等级。由于特征重要性的正式定义是缺乏的,因此难以验证这些方法。已经证明,一些显着性方法可以突出显示与预测目标(抑制变量)没有统计关联的特征。为了避免由于这种行为而误解,我们提出了这种关联的实际存在作为特征重要性的必要条件和客观初步定义。我们仔细制作了一个地面真实的数据集,其中所有统计依赖性都是明确的和线性的,作为研究抑制变量问题的基准。我们评估了关于我们的客观定义的常见解释方法,包括LRP,DTD,Patternet,图案化,石灰,锚,Shap和基于置换的方法。我们表明,大多数这些方法无法区分此设置中的抑制器的重要功能。
translated by 谷歌翻译
在决策过程中使用机器学习技术时,模型的可解释性很重要。在本文中,我们采用了福利添加剂解释(Shap),这是根据许多利益相关者之间的公平利润分配,根据其贡献,用于解释使用医院数据的渐变升级决策树模型。为了更好地解释,我们提出了如下的三种新技术:(1)使用SHAC和(2)所谓的特征包的特征重要性的新度量,该技术被称为一个分组的特征,以允许更容易地了解模型没有模型的重建。然后,将解释结果与Shap框架和现有方法进行比较。此外,我们展示了A / G比如何使用医院数据和所提出的技术作为脑梗死的重要预后因素。
translated by 谷歌翻译
可说明的人工智能(XAI)被确定为使用机器学习(ML)模型进行预测时确定功能的重要性的可行方法。在这项研究中,我们创建了将个人健康信息(例如,他们的药物历史和合并症)作为输入的模型,并预测个体将具有急性冠状动脉综合征(ACS)不利结果的可能性。使用Xai,我们量化了特定药物对这些ACS预测的贡献,从而产生了基于XAI的药物检测技术,使用ACS作为检测的不利结果的示例。鉴定了1993年至2009年在1993年至2009年期间提供的65岁以上的人(解剖治疗化学(ATC)级别M)或心血管系统(ATC类C)药物,以及其药物历史,组合和其他关键特征来自联系的西澳大利亚数据集。培训多种ML模型以预测这些个体如果这些个体具有ACS相关的不利结果(即,用于ACS的放电诊断的死亡或住院),并且使用各种ML和XAI技术来计算哪种特征 - 特别是哪种药物 - 导致这些预测。发现ROFecoxib和Celecoxib的药物分配特征对ACS相关的不利结果预测(平均)的贡献大于零效果,并且发现ACS相关的不利结果可以预测72%的准确度。此外,发现Xai库石灰和Shap成功识别重要和不重要的功能,具有略微优于石灰的形状。 ML培训的ML模型与XAI算法串联的连接行政健康数据集可以成功地量化特征重要性,并且随着进一步的开发,可能被用作药物检测技术。
translated by 谷歌翻译
本文介绍了一个开源Python工具箱,称为“集合功能重要性(EFI)”,以提供机器学习(ML)研究人员,领域专家和决策者,具有强大而准确的功能重要性的重要性量化,以及更可靠的机械解释,对使用预测问题的特征的重要性更重要模糊集。该工具包的开发是为了解决特征重要性量化的不确定性,并且由于机器学习算法的多样性,重要性计算方法和数据集依赖性而缺乏可信赖的特征重要性解释。 EFI使用数据自举和决策融合技术(例如平均值,多数投票和模糊逻辑)与多个机器学习模型合并了不同的特征重要性计算方法。 EFI工具箱的主要属性是:(i)ML算法的自动优化,(ii)从优化的ML算法和功能重要性计算技术中自动计算一组功能重要性系数,(iii)使用多个重要性系数的自动汇总决策融合技术和(iv)模糊成员资格功能,显示了每个功能对预测任务的重要性。描述了工具箱的关键模块和功能,并使用流行的IRIS数据集提供了其应用程序的简单示例。
translated by 谷歌翻译