在决策过程中使用机器学习技术时,模型的可解释性很重要。在本文中,我们采用了福利添加剂解释(Shap),这是根据许多利益相关者之间的公平利润分配,根据其贡献,用于解释使用医院数据的渐变升级决策树模型。为了更好地解释,我们提出了如下的三种新技术:(1)使用SHAC和(2)所谓的特征包的特征重要性的新度量,该技术被称为一个分组的特征,以允许更容易地了解模型没有模型的重建。然后,将解释结果与Shap框架和现有方法进行比较。此外,我们展示了A / G比如何使用医院数据和所提出的技术作为脑梗死的重要预后因素。
translated by 谷歌翻译
在决策过程中使用机器学习技术时,模型的解释性很重要。Shapley添加说明(SHAP)是机器学习模型最有前途的解释方法之一。当一个变量的效果取决于另一个变量的值时,就会发生交互作用。即使每个变量对结果几乎没有影响,其组合也会对结果产生大量影响。了解互动对于理解机器学习模型很重要。但是,天真的外形分析无法区分主要效果和相互作用效果。在本文中,我们将Shapley-Taylor索引作为一种解释方法,用于使用Shap考虑相互作用效果的机器学习模型。我们将该方法应用于京都大学医院的癌症队列数据(n = 29,080),以分析哪种因素组合有助于结肠癌的风险。
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
基于树的算法,如随机森林和渐变增强树,继续成为多学科最受欢迎和强大的机器学习模型之一。估计基于树模型中特征的影响的传统智慧是测量\脑缩小{节目减少损失函数},(i)仅收集全球重要性措施和(ii)遭受严重影响偏见。条件特征贡献(CFC)通过遵循决策路径并将模型的预期输出的更改归因于路径的每个功能,提供对预测的\ yourceit {local},逐个案例说明。但是,Lundberg等人。指出了CFC的潜在偏见,这取决于与树根的距离。现在是现在非常受欢迎的替代方案,福芙添加剂解释(Shap)值似乎减轻了这种偏差,但计算得多更昂贵。在这里,我们有助于对两种公开可用的分类问题的两种方法计算的解释进行了彻底的比较,以便向当前研究人员提供数据驱动算法的建议。对于随机森林,我们发现本地和全球形状值和CFC分数的极高相似之处和相关性,导致非常相似的排名和解释。类似的结论对于使用全局特征重要性分数的保真度作为与每个特征相关的预测电力的代理。
translated by 谷歌翻译
使用福利值的添加特征说明已经成为为每个特征的相对重要性提供给机器学习模型的个人预测的透明度。虽然福利值在合作博弈论中提供了独特的添加剂特征归因,但即使是单机学习模型也可以生成的福利值远非独特,具有影响所产生的血统的理论和实施决策。在这里,我们考虑福利值的应用解释决策树集合,并提出了一种可以应用于随机林和提升决策树的基于福芙值的特征归属的新方法。这种新方法提供了准确地反映各个实例的模型预测算法的细节的属性,同时使用最广泛使用的当前方法之一进行计算竞争。我们解释了标准和新颖方法之间的理论差异,并使用合成和实数据进行比较它们的绩效。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
背景:几项研究突出了考虑急性冠状动脉综合征(ACS)诊断和治疗性差异的重要性。然而,几乎已经研究了ACS子群中的性别特异性风险标志物。本研究旨在探索机器学习(ML)模型,以识别从电子健康记录(EHR)的公共数据库中的ACS子群体中的妇女和男性的住院死亡率标志。方法:从医疗信息MART中提取1,299名患有的ST升高的心肌梗死(Stemi)和2,820名非St-Expation心肌梗死患者进行重症监护(MIMIC)-III数据库。我们培训和验证了死亡率预测模型,并使用了可解释性技术来识别每个子群体的性别特异性标记。结果:基于极端梯度升压的模型(XGBoost)实现了最高性能:STEMI和AUC = 0.94(95 \%CI:0.80- 0.90)为nstemi。对于STEMI,女性的顶部标记是慢性肾功能衰竭,心率高,年龄超过70岁。对于男性来说,顶部标记是急性肾功能衰竭,高肌钙蛋白T水平,年龄超过75岁。然而,对于NStemi,女性的顶部标记较低,肌钙蛋白水平低,尿素水平高,80多年。对于男性来说,顶部标记是高心率,肌酐水平,年龄超过70岁。结论:我们的结果表明,通过解释ehrs培训的ML死亡率模型,通过解释ML死亡率模型显示不同ACS子群的可能的显着和相干的性别特异性风险标记。在妇女与男性的确定风险标志中观察到差异,突出了考虑性别特异性标记在实施更适当的治疗策略和更好的临床结果方面的重要性。
translated by 谷歌翻译
Ridesplitting是合并的骑乘服务的一种形式,具有减轻骑行对环境的负面影响的巨大潜力。但是,大多数现有研究仅根据优化模型和仿真探索其理论环境益处。相比之下,这项研究旨在揭示基于观察到的中国骑车数据的数据及其决定因素的现实世界排放减少。本研究将Trip数据与Copert模型整合在一起,计算了共享乘车的CO2排放量(Ridesplitting)及其取代的单骑行(常规乘车),以估计每次骑行旅行的CO2排放降低。结果表明,并非所有的骑行旅行都减少了现实世界中的骑车的排放。二氧化碳的降低速度降低速率因行程到旅行而异,平均为43.15g/km。然后,应用可解释的机器学习模型,梯度提升机,用于探索二氧化碳排放率降低速度的关系及其决定因素之间的关系。基于Shapley添加剂解释(SHAP)方法,共享乘车的重叠率和弯路率被确定为确定二氧化碳排放率降低乘车率的最重要因素。增加重叠率,共享乘车的数量,平均速度和行驶距离比率,同时降低弯路率,实际行程距离和行驶距离差距可以增加二氧化碳排放率的降低骑行率。另外,通过部分依赖图研究了决定因素的非线性效应和相互作用。总而言之,这项研究为政府和骑车公司提供了一种科学方法,以更好地评估和优化乘车的环境利益。
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
测量黑匣子预测算法中变量重要性的最流行方法是利用合成输入,这些输入结合了来自多个受试者的预测变量。这些输入可能是不可能的,身体上不可能的,甚至在逻辑上是不可能的。结果,对这种情况的预测可以基于数据,这与对黑匣子的训练非常不同。我们认为,当解释使用此类值时,用户不能相信预测算法的决定的解释。取而代之的是,我们主张一种称为同类沙普利的方法,该方法基于经济游戏理论,与大多数其他游戏理论方法不同,它仅使用实际观察到的数据来量化可变重要性。莎普利队的同伙通过缩小判断的主题的缩小,被认为与一个或多个功能上的目标主题相似。如果使用它来缩小队列对队列平均值有很大的不同,则功能很重要。我们在算法公平问题上进行了说明,其中必须将重要性归因于未经训练模型的保护变量。对于每个主题和每个预测变量,我们可以计算该预测因子对受试者的预测响应或对其实际响应的重要性。这些值可以汇总,例如在所有黑色受试者上,我们提出了一个贝叶斯引导程序来量化个人和骨料莎普利值的不确定性。
translated by 谷歌翻译
与经典的统计学习方法相比,机器和深度学习生存模型表现出相似甚至改进事件的预测能力,但太复杂了,无法被人类解释。有几种模型不合时宜的解释可以克服这个问题。但是,没有一个直接解释生存函数预测。在本文中,我们介绍了Survhap(t),这是第一个允许解释生存黑盒模型的解释。它基于Shapley添加性解释,其理论基础稳定,并在机器学习从业人员中广泛采用。拟议的方法旨在增强精确诊断和支持领域的专家做出决策。关于合成和医学数据的实验证实,survhap(t)可以检测具有时间依赖性效果的变量,并且其聚集是对变量对预测的重要性的决定因素,而不是存活。 survhap(t)是模型不可屈服的,可以应用于具有功能输出的所有型号。我们在http://github.com/mi2datalab/survshap中提供了python中时间相关解释的可访问实现。
translated by 谷歌翻译
本文研究了与可解释的AI(XAI)实践有关的两个不同但相关的问题。机器学习(ML)在金融服务中越来越重要,例如预批准,信用承销,投资以及各种前端和后端活动。机器学习可以自动检测培训数据中的非线性和相互作用,从而促进更快,更准确的信用决策。但是,机器学习模型是不透明的,难以解释,这是建立可靠技术所需的关键要素。该研究比较了各种机器学习模型,包括单个分类器(逻辑回归,决策树,LDA,QDA),异质集合(Adaboost,随机森林)和顺序神经网络。结果表明,整体分类器和神经网络的表现优于表现。此外,使用基于美国P2P贷款平台Lending Club提供的开放式访问数据集评估了两种先进的事后不可解释能力 - 石灰和外形来评估基于ML的信用评分模型。对于这项研究,我们还使用机器学习算法来开发新的投资模型,并探索可以最大化盈利能力同时最大程度地降低风险的投资组合策略。
translated by 谷歌翻译
医院住宿时间(LOS)是最重要的医疗保健度量之一,反映了医院的服务质量,有助于改善医院调度和管理。LOS预测有助于成本管理,因为留在医院的患者通常在资源受到严重限制的情况下这样做。在这项研究中,我们通过机器学习和统计方法审查了LOS预测的论文。我们的文献综述考虑了对卒中患者LOS预测的研究研究。一些受访的研究表明,作者达成了相应的结论。例如,患者的年龄被认为是一些研究中卒中患者LOS的重要预测因子,而其他研究则认为年龄不是一个重要因素。因此,在该领域需要额外的研究以进一步了解卒中患者LOS的预测因子。
translated by 谷歌翻译
由于其理想的特性,与Shapley相关的技术已成为全球和局部解释工具的关注。但是,他们使用条件期望的计算在计算上是昂贵的。文献中建议的近似方法有局限性。本文提出了基于条件期望的基于替代模型的树来计算沙普利和塑造值。仿真研究表明,拟议的算法可提供准确性的提高,统一全球沙普利和外形解释,而阈值方法为折衷运行时间和准确性提供了一种方法。
translated by 谷歌翻译
Besides accuracy, recent studies on machine learning models have been addressing the question on how the obtained results can be interpreted. Indeed, while complex machine learning models are able to provide very good results in terms of accuracy even in challenging applications, it is difficult to interpret them. Aiming at providing some interpretability for such models, one of the most famous methods, called SHAP, borrows the Shapley value concept from game theory in order to locally explain the predicted outcome of an instance of interest. As the SHAP values calculation needs previous computations on all possible coalitions of attributes, its computational cost can be very high. Therefore, a SHAP-based method called Kernel SHAP adopts an efficient strategy that approximate such values with less computational effort. In this paper, we also address local interpretability in machine learning based on Shapley values. Firstly, we provide a straightforward formulation of a SHAP-based method for local interpretability by using the Choquet integral, which leads to both Shapley values and Shapley interaction indices. Moreover, we also adopt the concept of $k$-additive games from game theory, which contributes to reduce the computational effort when estimating the SHAP values. The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
translated by 谷歌翻译
We introduce the XPER (eXplainable PERformance) methodology to measure the specific contribution of the input features to the predictive or economic performance of a model. Our methodology offers several advantages. First, it is both model-agnostic and performance metric-agnostic. Second, XPER is theoretically founded as it is based on Shapley values. Third, the interpretation of the benchmark, which is inherent in any Shapley value decomposition, is meaningful in our context. Fourth, XPER is not plagued by model specification error, as it does not require re-estimating the model. Fifth, it can be implemented either at the model level or at the individual level. In an application based on auto loans, we find that performance can be explained by a surprisingly small number of features. XPER decompositions are rather stable across metrics, yet some feature contributions switch sign across metrics. Our analysis also shows that explaining model forecasts and model performance are two distinct tasks.
translated by 谷歌翻译
口服食物挑战(OFC)对于准确诊断患者的食物过敏至关重要。但是,患者不愿接受OFC,对于那些这样做的患者,在农村/社区医疗保健环境中,对过敏症患者的使用率有限。通过机器学习方法对OFC结果的预测可以促进在家中食品过敏原的删除,在OFC中改善患者和医师的舒适度,并通过最大程度地减少执行的OFC的数量来节省医疗资源。临床数据是从共同接受1,284个OFC的1,12例患者那里收集的,包括临床因素,包括血清特异性IgE,总IgE,皮肤刺测试(SPTS),症状,性别和年龄。使用这些临床特征,构建了机器学习模型,以预测花生,鸡蛋和牛奶挑战的结果。每种过敏原的最佳性能模型是使用凹入和凸内核(LUCCK)方法创建的,该方法在曲线(AUC)(AUC)下分别用于花生,鸡蛋和牛奶OFC预测为0.76、0.68和0.70, 。通过Shapley添加说明(SHAP)的模型解释表明,特定的IgE以及SPTS的Wheal和Flare值高度预测了OFC结果。该分析的结果表明,机器学习有可能预测OFC结果,并揭示了相关的临床因素进行进一步研究。
translated by 谷歌翻译
目的:Shapley添加说明(SHAP)是一种流行的事后技术,用于解释黑匣子模型。尽管已经对数据不平衡对预测模型的影响进行了广泛的研究,但在基于Shap的模型解释方面,它在很大程度上仍然未知。这项研究试图研究数据不平衡对深度学习模型的Shap解释的影响,并提出一种减轻这些影响的策略。材料和方法:我们建议在解释黑匣子模型时在背景中调整类别的类别,并在形状中进行解释数据。我们的数据平衡策略是构成背景数据和解释数据,同等分布。为了评估数据调整对模型解释的影响,我们建议将Beeswarm图用作定性工具,以识别“异常”解释伪像,并定量测试可变重要性和预测能力之间的一致性。我们在一项实证研究中证明了我们提出的方法,该研究使用医学信息MART(MIMIC-III)数据预测住院死亡率和多层概念。结果:使用数据平衡策略将使我们能够减少蜜蜂图图中的工件数量,从而减轻数据不平衡的负面影响。此外,通过平衡策略,来自相应重要性排名的顶级变量表明歧视能力得到了改善。讨论和结论:我们的发现表明,平衡的背景和解释数据可以帮助减少偏斜的数据分布引起的解释结果中的噪声,并提高可变重要性排名的可靠性。此外,这些平衡程序提高了在临床应用中识别出异常特征的患者方面的可能性。
translated by 谷歌翻译
The issue of left before treatment complete (LBTC) patients is common in emergency departments (EDs). This issue represents a medico-legal risk and may cause a revenue loss. Thus, understanding the factors that cause patients to leave before treatment is complete is vital to mitigate and potentially eliminate these adverse effects. This paper proposes a framework for studying the factors that affect LBTC outcomes in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization--one of the main challenges of machine learning model development. Three metaheuristic optimization algorithms are employed for optimizing the parameters of extreme gradient boosting (XGB), which are simulated annealing (SA), adaptive simulated annealing (ASA), and adaptive tabu simulated annealing (ATSA). The optimized XGB models are used to predict the LBTC outcomes for the patients under treatment in ED. The designed algorithms are trained and tested using four data groups resulting from the feature selection phase. The model with the best predictive performance is interpreted using SHaply Additive exPlanations (SHAP) method. The findings show that ATSA-XGB outperformed other mode configurations with an accuracy, area under the curve (AUC), sensitivity, specificity, and F1-score of 86.61%, 87.50%, 85.71%, 87.51%, and 86.60%, respectively. The degree and the direction of effects of each feature were determined and explained using the SHAP method.
translated by 谷歌翻译
PV power forecasting models are predominantly based on machine learning algorithms which do not provide any insight into or explanation about their predictions (black boxes). Therefore, their direct implementation in environments where transparency is required, and the trust associated with their predictions may be questioned. To this end, we propose a two stage probabilistic forecasting framework able to generate highly accurate, reliable, and sharp forecasts yet offering full transparency on both the point forecasts and the prediction intervals (PIs). In the first stage, we exploit natural gradient boosting (NGBoost) for yielding probabilistic forecasts, while in the second stage, we calculate the Shapley additive explanation (SHAP) values in order to fully comprehend why a prediction was made. To highlight the performance and the applicability of the proposed framework, real data from two PV parks located in Southern Germany are employed. Comparative results with two state-of-the-art algorithms, namely Gaussian process and lower upper bound estimation, manifest a significant increase in the point forecast accuracy and in the overall probabilistic performance. Most importantly, a detailed analysis of the model's complex nonlinear relationships and interaction effects between the various features is presented. This allows interpreting the model, identifying some learned physical properties, explaining individual predictions, reducing the computational requirements for the training without jeopardizing the model accuracy, detecting possible bugs, and gaining trust in the model. Finally, we conclude that the model was able to develop complex nonlinear relationships which follow known physical properties as well as human logic and intuition.
translated by 谷歌翻译