心脏磁共振(CMR)序列随着时间的推移可视化心脏功能的体素。同时,基于深度学习的可变形图像注册能够估计离散的向量字段,这些矢量字段将CMR序列的一个时间步骤扭曲为以下方式,以一种自我监督的方式。但是,尽管这些3D+T向量领域中包含的信息来源丰富,但标准化的解释具有挑战性,到目前为止,临床应用仍然有限。在这项工作中,我们展示了如何有效使用可变形的矢量场来描述心脏周期的基本动态过程,形式是派生的1D运动描述符。此外,基于收缩或放松心室的预期心血管生理特性,我们定义了一组规则,可以鉴定五个心血管阶段,包括末端 - 末端(ES)和末端diastole(ED),而无需使用标签的使用情况。我们评估了运动描述符在两个具有挑战性的多疾病, - 中心, - 扫描式短轴CMR数据集上的合理性。首先,通过报告定量措施,例如提取相的周期性框架差异。其次,通过定性地比较一般模式,当我们时间重新样本和对齐两个数据集的所有实例的运动描述符时。我们方法的ED,ES密钥阶段的平均周期框架差为0.80 \ pm {0.85} $,$ 0.69 \ pm {0.79} $,比观察者间的可变性略好($ 1.07 \ pm {0.86} $, $ 0.91 \ pm {1.6} $)和监督基线方法($ 1.18 \ pm {1.91} $,$ 1.21 \ pm {1.78} $)。代码和标签将在我们的GitHub存储库中提供。 https://github.com/cardio-ai/cmr-phase-detection
translated by 谷歌翻译
从电影心脏磁共振(CMR)成像中恢复心脏的3D运动可以评估区域心肌功能,对于理解和分析心血管疾病很重要。但是,3D心脏运动估计是具有挑战性的,因为获得的Cine CMR图像通常是2D切片,它限制了对整个平面运动的准确估计。为了解决这个问题,我们提出了一个新颖的多视图运动估计网络(Mulvimotion),该网络集成了以短轴和长轴平面获取的2D Cine CMR图像,以学习心脏的一致性3D运动场。在提出的方法中,构建了一个混合2D/3D网络,以通过从多视图图像中学习融合表示形式来生成密集的3D运动场。为了确保运动估计在3D中保持一致,在训练过程中引入了形状正则化模块,其中利用了来自多视图图像的形状信息,以提供3D运动估计的弱监督。我们对来自英国生物银行研究的580名受试者的2D Cine CMR图像进行了广泛评估,用于左心室心肌的3D运动跟踪。实验结果表明,该方法在定量和定性上优于竞争方法。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
心肌运动和变形是表征心脏功能的丰富描述符。图像注册是心肌运动跟踪最常用的技术,是一个不当的反问题,通常需要先前对解决方案空间进行假设。与大多数现有的方法相反,它们强加了明确的通用正则化(例如平滑度),在这项工作中,我们提出了一种新的方法,该方法可以隐式地学习了特定于应用程序的生物力学知识,并将其嵌入了神经网络参数化转换模型中。尤其是,提出的方法利用基于变异自动编码器的生成模型来学习生物力学上合理变形的多种多样。然后,可以通过穿越学习的歧管来搜索最佳转换时,在考虑序列信息时搜索最佳转换。该方法在三个公共心脏Cine MRI数据集中进行了验证,并具有全面的评估。结果表明,所提出的方法可以胜过其他方法,从而获得更高的运动跟踪精度,并具有合理的量保存和更好地变化数据分布的概括性。它还可以更好地估计心肌菌株,这表明该方法在表征时空特征以理解心血管疾病方面的潜力。
translated by 谷歌翻译
Delineation of the left ventricular cavity, myocardium and right ventricle from cardiac magnetic resonance images (multi-slice 2D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly-available and fully-annotated dataset for the purpose of Cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification O. Bernard and F. Cervenansky are with the
translated by 谷歌翻译
左心室(LV)功能是心脏病患者的患者管理,结局和长期存活方面的重要因素。最近发表的心力衰竭临床指南认识到,仅依赖一种心脏功能(LV射血分数)作为诊断和治疗分层生物标志物的依赖是次优。基于AI的超声心动图分析的最新进展已在LV体积和LV射血分数的自动估计上显示出良好的结果。但是,从随时间变化的2D超声心动图摄取,可以通过从完整的心脏周期中估算功能性生物标志物来获得对心脏功能的更丰富的描述。在这项工作中,我们首次提出了一种基于全心脏周期分割的2D超声心动图的AI方法,用于从2D超声心动图中得出高级生物标志物。这些生物标志物将允许临床医生获得健康和疾病中心脏的丰富图片。 AI模型基于“ NN-UNET”框架,并使用四个不同的数据库进行了训练和测试。结果表明,手动分析和自动分析之间的一致性很高,并展示了晚期收缩期和舒张期生物标志物在患者分层中的潜力。最后,对于50例病例的子集,我们在超声心动图和CMR的临床生物标志物之间进行了相关分析,我们在两种方式之间表现出了极好的一致性。
translated by 谷歌翻译
卷积神经网络(CNN)已经证明了它们对2D心脏超声图像进行分割的能力。然而,尽管近期取得了成功的成功,但是已经达到了端舒张和终结图像的观测器内变异性,CNNS仍然难以利用时间信息来在整个周期中提供准确和时间一致的分割图。需要这种持续性来准确描述心功能,这是诊断许多心血管疾病的必要步骤。在本文中,我们提出了一种学习2D +时间长轴心形形状的框架,使得分段序列可以受益于时间和解剖的一致性约束。我们的方法是一种后处理,其作为输入分段的超声心动图序列,其由任何最先进的方法产生,并以两个步骤来处理(i)根据心脏序列的整体动态识别时空不一致。 (ii)纠正不一致。心脏不一致的识别和纠正依赖于受约束的AutoEncoder培训,以学习生理学上可解释的心形状嵌入,在那里我们都可以检测和修复异常。我们在98个来自Camus DataSet的全循环序列上测试了我们的框架,这将与本文一起播放。我们的时间正则化方法不仅可以提高整个序列的分割的准确性,而且还强制执行时间和解剖常量。
translated by 谷歌翻译
来自类似的心脏磁共振(CMR)图像的3D运动估计对于评估心脏功能和心血管疾病的诊断很重要。以前的大多数方法都侧重于估计完整图像空间中的像素 - /体素运动场,这忽略了运动估计主要是相关且在感兴趣的对象中有用的事实,例如心脏。在这项工作中,我们将心脏建模为3D几何网格,并提出了一种新型的基于深度学习的方法,该方法可以从2D短轴和长轴CMR图像中估算心脏网格的3D运动。通过开发可区分的网格到图像射击器,该方法能够利用2D多视图CMR图像的解剖形状信息进行3D运动估计。 Rasterizer的不同性使我们能够训练该方法最终到端。提出方法的一个优点是,通过跟踪每个顶点的运动,它可以保持时间帧之间3D网格的顶点对应关系,这对于对网格上心脏功能的定量评估很重要。我们评估了从英国生物银行研究获得的CMR图像的建议方法。实验结果表明,所提出的方法在定量和定性上都优于常规和基于学习的心脏运动跟踪方法。
translated by 谷歌翻译
超声心动图参数的准确和一致的预测对于心血管诊断和治疗至关重要。特别是,左心室的分割可用于得出心室体积,射血分数(EF)和其他相关测量值。在本文中,我们提出了一种新的自动化方法,称为地位谱图,用于通过检测解剖关键来预测射血分数和分割左心室。基于图形卷积网络(GCN)的直接坐标回归模型用于检测关键点。 GCN可以学会根据每个关键点的局部外观以及所有关键点的全局空间和时间结构来表示心脏形状。我们在echonet基准数据集上评估了我们的电子位计模型。与语义分割相比,GCN显示出准确的分割和鲁棒性和推理运行时的改进。 EF是同时计算的与分割的,我们的方法还获得了最新的射血分数估计。源代码可在线获得:https://github.com/guybenyosef/echographs。
translated by 谷歌翻译
简介:人工智能(AI)有可能促进CMR分析以进行生物标志物提取的自动化。但是,大多数AI算法都经过特定输入域(例如单扫描仪供应商或医院量化成像协议)的培训,并且当从其他输入域中应用于CMR数据时,缺乏最佳性能的鲁棒性。方法:我们提出的框架包括一种基于AI的算法,用于对短轴图像的双脑室分割,然后进行分析后质量控制,以检测错误的结果。分割算法在来自两家NHS医院(n = 2793)的大型临床CMR扫描数据集上进行了培训,并在此数据集(n = 441)和五个外部数据集(n = 6808)上进行了验证。验证数据包括使用所有主要供应商的CMR扫描仪在12个不同中心获得的一系列疾病的患者的CMR扫描。结果:我们的方法产生的中位骰子得分超过87%,转化为观察者间变异范围内心脏生物标志物中的中值绝对错误:<8.4ml(左心室),<9.2ml(右心室),<13.3G(左心室),<13.3G(左心室所有数据集的心室质量),<5.9%(射血分数)。根据心脏疾病和扫描仪供应商的表型的病例分层显示出良好的一致性。结论:我们表明,我们提出的工具结合了在大规模多域CMR数据集中训练的最先进的AI算法和分析后质量控制,使我们能够从多个中心,供应商和心脏病。这是AI算法临床翻译的基本步骤。此外,我们的方法以无需额外的计算成本而产生一系列心脏功能(填充和弹出率,区域壁运动和应变)的附加生物标志物。
translated by 谷歌翻译
Left-ventricular ejection fraction (LVEF) is an important indicator of heart failure. Existing methods for LVEF estimation from video require large amounts of annotated data to achieve high performance, e.g. using 10,030 labeled echocardiogram videos to achieve mean absolute error (MAE) of 4.10. Labeling these videos is time-consuming however and limits potential downstream applications to other heart diseases. This paper presents the first semi-supervised approach for LVEF prediction. Unlike general video prediction tasks, LVEF prediction is specifically related to changes in the left ventricle (LV) in echocardiogram videos. By incorporating knowledge learned from predicting LV segmentations into LVEF regression, we can provide additional context to the model for better predictions. To this end, we propose a novel Cyclical Self-Supervision (CSS) method for learning video-based LV segmentation, which is motivated by the observation that the heartbeat is a cyclical process with temporal repetition. Prediction masks from our segmentation model can then be used as additional input for LVEF regression to provide spatial context for the LV region. We also introduce teacher-student distillation to distill the information from LV segmentation masks into an end-to-end LVEF regression model that only requires video inputs. Results show our method outperforms alternative semi-supervised methods and can achieve MAE of 4.17, which is competitive with state-of-the-art supervised performance, using half the number of labels. Validation on an external dataset also shows improved generalization ability from using our method. Our code is available at https://github.com/xmed-lab/CSS-SemiVideo.
translated by 谷歌翻译
这项研究提出了一个基于移动网格参数化的端到端无监督的差异可变形登记框架。使用此参数化,可以使用其转换雅各布的决定因素和末端速度场的卷曲来建模。变形场的新模型具有三个重要优势。首先,它放松了对成本函数的显式正则化项和相应重量的需求。平滑度隐含在溶液中,从而导致物理上合理的变形场。其次,它通过适用于转换雅各布决定因素的明确约束来保证差异性。最后,它适用于心脏数据处理,因为该参数化的性质是根据​​径向和旋转成分定义变形场。通过在包括2D和3D心脏MRI扫描在内的三个不同数据集上评估拟议方法来研究算法的有效性。结果表明,所提出的框架在生成差异变换的同时优于现有的基于学习的方法和基于非学习的方法。
translated by 谷歌翻译
可变形的图像注册提供了有关图像的动态信息,并且在医学图像分析中至关重要。但是,由于单个时期脑MR图像和多阶梯超声心动图的不同特征,因此很难使用相同的算法或模型准确地注册它们。我们提出了一个无监督的多尺度相关性迭代注册网络(SearchMorph),该模型具有三个亮点。 (1)我们引入了成本量来加强特征相关性和构造的相关金字塔以补充多尺度相关信息。 (2)我们设计了搜索模块来搜索多尺度金字塔中功能的注册。 (3)我们使用GRU模块进行变形场的迭代细化。本文提出的网络显示了在常见的单个时间段登记任务中的领导,并解决了多时间运动估计任务。实验结果表明,我们提出的方法比最新方法获得了更高的注册精度和更低的折叠点比。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
背景:心肌灌注SPECT(MPS)对左心室(LV)功能的评估依赖于准确的心肌分割。本文的目的是开发和验证一种新的方法,该方法将深度学习与形状先验结合在一起,以精确提取LV心肌以自动测量LV功能参数。方法:开发了与形状变形模块集成三维(3D)V-NET的分割体系结构。使用动态编程(DP)算法生成的形状先验,然后在模型训练期间限制并指导模型输出,以快速收敛和改善性能。分层的5倍交叉验证用于训练和验证我们的模型。结果:我们提出的方法的结果与地面真理的结果一致。我们提出的模型的骰子相似性系数(DSC)为0.9573(0.0244),0.9821(0.0137)和0.9903(0.0041),Hausdorff距离(HD)6.7529(2.7334)(2.7334)mm,7.2507(3.2507(3.1952)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MM,和7.6122 3.0134)MM分别提取心内膜,心肌和心外膜。结论:我们提出的方法在提取LV心肌轮廓和评估LV功能方面具有很高的精度。
translated by 谷歌翻译
关节2D心脏分割和3D体积重建是建立统计心脏解剖模型的基础,并了解运动模式的功能机制。但是,由于CINE MR和高主体间方差的平面分辨率低,精确分割心脏图像并重建3D体积是具有挑战性的。在这项研究中,我们提出了一个基于潜在空间的端到端框架DeepRecon,该框架会产生多个临床上基本的结果,包括准确的图像分割,合成高分辨率3D图像和3D重建体积。我们的方法确定了Cine图像的最佳潜在表示,其中包含心脏结构的准确语义信息。特别是,我们的模型共同生成具有准确的语义信息的合成图像,并使用最佳潜在表示对心脏结构进行分割。我们进一步探索了3D形状重建和4D运动模式通过不同的潜在空间操纵策略进行适应的下游应用。同时生成的高分辨率图像具有评估心脏形状和运动的高可解释价值。实验性结果证明了我们的有效性在多个方面的方法,包括2D分割,3D重建,下游4D运动模式适应性。
translated by 谷歌翻译
通过磁共振成像(MRI)评估肿瘤负担对于评估胶质母细胞瘤的治疗反应至关重要。由于疾病的高异质性和复杂性,该评估的性能很复杂,并且与高变异性相关。在这项工作中,我们解决了这个问题,并提出了一条深度学习管道,用于对胶质母细胞瘤患者进行全自动的端到端分析。我们的方法同时确定了肿瘤的子区域,包括第一步的肿瘤,周围肿瘤和手术腔,然后计算出遵循神经符号学(RANO)标准的当前响应评估的体积和双相测量。此外,我们引入了严格的手动注释过程,其随后是人类专家描绘肿瘤子区域的,并捕获其分割的信心,后来在训练深度学习模型时被使用。我们广泛的实验研究的结果超过了760次术前和504例从公共数据库获得的神经胶质瘤后患者(2021 - 2020年在19个地点获得)和临床治疗试验(47和69个地点,可用于公共数据库(在19个地点获得)(47和69个地点)术前/术后患者,2009-2011)并以彻底的定量,定性和统计分析进行了备份,表明我们的管道在手动描述时间的一部分中对术前和术后MRI进行了准确的分割(最高20比人更快。二维和体积测量与专家放射科医生非常吻合,我们表明RANO测量并不总是足以量化肿瘤负担。
translated by 谷歌翻译
Deformable registration of two-dimensional/three-dimensional (2D/3D) images of abdominal organs is a complicated task because the abdominal organs deform significantly and their contours are not detected in two-dimensional X-ray images. We propose a supervised deep learning framework that achieves 2D/3D deformable image registration between 3D volumes and single-viewpoint 2D projected images. The proposed method learns the translation from the target 2D projection images and the initial 3D volume to 3D displacement fields. In experiments, we registered 3D-computed tomography (CT) volumes to digitally reconstructed radiographs generated from abdominal 4D-CT volumes. For validation, we used 4D-CT volumes of 35 cases and confirmed that the 3D-CT volumes reflecting the nonlinear and local respiratory organ displacement were reconstructed. The proposed method demonstrate the compatible performance to the conventional methods with a dice similarity coefficient of 91.6 \% for the liver region and 85.9 \% for the stomach region, while estimating a significantly more accurate CT values.
translated by 谷歌翻译
CT图像中的椎骨定位,分割和识别是众多临床应用的关键。尽管近年来,深度学习策略已为该领域带来了重大改进,但由于其在培训数据集中的代表性不佳,过渡性和病理椎骨仍在困扰大多数现有方法。另外,提出的基于非学习的方法可以利用先验知识来处理这种特定情况。在这项工作中,我们建议将这两种策略结合起来。为此,我们引入了一个迭代循环,在该循环中,单个椎骨被递归地定位,分割和使用深网鉴定,而使用统计先验则实施解剖一致性。在此策略中,通过在图形模型中编码其配置来处理过渡性椎骨识别,该模型将局部深网预测汇总为解剖上一致的最终结果。我们的方法在Verse20挑战基准上取得了最新的结果,并且优于过渡性椎骨的所有方法以及对Verse19挑战基准的概括。此外,我们的方法可以检测和报告不满足解剖学一致性先验的不一致的脊柱区域。我们的代码和模型公开用于研究目的。
translated by 谷歌翻译