从电影心脏磁共振(CMR)成像中恢复心脏的3D运动可以评估区域心肌功能,对于理解和分析心血管疾病很重要。但是,3D心脏运动估计是具有挑战性的,因为获得的Cine CMR图像通常是2D切片,它限制了对整个平面运动的准确估计。为了解决这个问题,我们提出了一个新颖的多视图运动估计网络(Mulvimotion),该网络集成了以短轴和长轴平面获取的2D Cine CMR图像,以学习心脏的一致性3D运动场。在提出的方法中,构建了一个混合2D/3D网络,以通过从多视图图像中学习融合表示形式来生成密集的3D运动场。为了确保运动估计在3D中保持一致,在训练过程中引入了形状正则化模块,其中利用了来自多视图图像的形状信息,以提供3D运动估计的弱监督。我们对来自英国生物银行研究的580名受试者的2D Cine CMR图像进行了广泛评估,用于左心室心肌的3D运动跟踪。实验结果表明,该方法在定量和定性上优于竞争方法。
translated by 谷歌翻译
来自类似的心脏磁共振(CMR)图像的3D运动估计对于评估心脏功能和心血管疾病的诊断很重要。以前的大多数方法都侧重于估计完整图像空间中的像素 - /体素运动场,这忽略了运动估计主要是相关且在感兴趣的对象中有用的事实,例如心脏。在这项工作中,我们将心脏建模为3D几何网格,并提出了一种新型的基于深度学习的方法,该方法可以从2D短轴和长轴CMR图像中估算心脏网格的3D运动。通过开发可区分的网格到图像射击器,该方法能够利用2D多视图CMR图像的解剖形状信息进行3D运动估计。 Rasterizer的不同性使我们能够训练该方法最终到端。提出方法的一个优点是,通过跟踪每个顶点的运动,它可以保持时间帧之间3D网格的顶点对应关系,这对于对网格上心脏功能的定量评估很重要。我们评估了从英国生物银行研究获得的CMR图像的建议方法。实验结果表明,所提出的方法在定量和定性上都优于常规和基于学习的心脏运动跟踪方法。
translated by 谷歌翻译
心肌运动和变形是表征心脏功能的丰富描述符。图像注册是心肌运动跟踪最常用的技术,是一个不当的反问题,通常需要先前对解决方案空间进行假设。与大多数现有的方法相反,它们强加了明确的通用正则化(例如平滑度),在这项工作中,我们提出了一种新的方法,该方法可以隐式地学习了特定于应用程序的生物力学知识,并将其嵌入了神经网络参数化转换模型中。尤其是,提出的方法利用基于变异自动编码器的生成模型来学习生物力学上合理变形的多种多样。然后,可以通过穿越学习的歧管来搜索最佳转换时,在考虑序列信息时搜索最佳转换。该方法在三个公共心脏Cine MRI数据集中进行了验证,并具有全面的评估。结果表明,所提出的方法可以胜过其他方法,从而获得更高的运动跟踪精度,并具有合理的量保存和更好地变化数据分布的概括性。它还可以更好地估计心肌菌株,这表明该方法在表征时空特征以理解心血管疾病方面的潜力。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
脑MRI图像的登记需要解决变形领域,这对于对准复杂的脑组织,例如皮质核等,这是极其困难的现有努力,该努力在具有微小运动的中间子场中分解目标变形领域,即逐步登记阶段或较低的分辨率,即全尺寸变形场的粗析估计。在本文中,我们认为这些努力不是相互排斥的,并为普通和粗良好的方式同时提出统一的脑MRI登记统一框架。具体地,在双编码器U-Net上构建,定制移动的MRI对被编码和解码成从粗略到精细的多尺度变形子字段。每个解码块包含两个提出的新颖模块:i)在变形场积分(DFI)中,计算单个集成子字段,翘曲,其等同于来自所有先前解码块的子字段逐渐翘曲,并且II)非刚性特征融合(NFF),固定移动对的特征由DFI集成子场对齐,然后融合以预测更精细的子场。利用DFI和NFF,目标变形字段被修改为多尺度子场,其中较粗糙的字段缓解了更精细的一个和更精细的字段的估计,以便构成以前粗糙的较粗糙的那些错位。私人和公共数据集的广泛和全面的实验结果展示了脑MRI图像的优越的登记性能,仅限于逐步登记和粗略估计,平均骰子的粗略估计数量在最多8%上升。
translated by 谷歌翻译
这项研究提出了一个基于移动网格参数化的端到端无监督的差异可变形登记框架。使用此参数化,可以使用其转换雅各布的决定因素和末端速度场的卷曲来建模。变形场的新模型具有三个重要优势。首先,它放松了对成本函数的显式正则化项和相应重量的需求。平滑度隐含在溶液中,从而导致物理上合理的变形场。其次,它通过适用于转换雅各布决定因素的明确约束来保证差异性。最后,它适用于心脏数据处理,因为该参数化的性质是根据​​径向和旋转成分定义变形场。通过在包括2D和3D心脏MRI扫描在内的三个不同数据集上评估拟议方法来研究算法的有效性。结果表明,所提出的框架在生成差异变换的同时优于现有的基于学习的方法和基于非学习的方法。
translated by 谷歌翻译
Delineation of the left ventricular cavity, myocardium and right ventricle from cardiac magnetic resonance images (multi-slice 2D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly-available and fully-annotated dataset for the purpose of Cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification O. Bernard and F. Cervenansky are with the
translated by 谷歌翻译
可变形的图像注册提供了有关图像的动态信息,并且在医学图像分析中至关重要。但是,由于单个时期脑MR图像和多阶梯超声心动图的不同特征,因此很难使用相同的算法或模型准确地注册它们。我们提出了一个无监督的多尺度相关性迭代注册网络(SearchMorph),该模型具有三个亮点。 (1)我们引入了成本量来加强特征相关性和构造的相关金字塔以补充多尺度相关信息。 (2)我们设计了搜索模块来搜索多尺度金字塔中功能的注册。 (3)我们使用GRU模块进行变形场的迭代细化。本文提出的网络显示了在常见的单个时间段登记任务中的领导,并解决了多时间运动估计任务。实验结果表明,我们提出的方法比最新方法获得了更高的注册精度和更低的折叠点比。
translated by 谷歌翻译
关节2D心脏分割和3D体积重建是建立统计心脏解剖模型的基础,并了解运动模式的功能机制。但是,由于CINE MR和高主体间方差的平面分辨率低,精确分割心脏图像并重建3D体积是具有挑战性的。在这项研究中,我们提出了一个基于潜在空间的端到端框架DeepRecon,该框架会产生多个临床上基本的结果,包括准确的图像分割,合成高分辨率3D图像和3D重建体积。我们的方法确定了Cine图像的最佳潜在表示,其中包含心脏结构的准确语义信息。特别是,我们的模型共同生成具有准确的语义信息的合成图像,并使用最佳潜在表示对心脏结构进行分割。我们进一步探索了3D形状重建和4D运动模式通过不同的潜在空间操纵策略进行适应的下游应用。同时生成的高分辨率图像具有评估心脏形状和运动的高可解释价值。实验性结果证明了我们的有效性在多个方面的方法,包括2D分割,3D重建,下游4D运动模式适应性。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
精确的心脏计算,多种式图像的分析和建模对于心脏病的诊断和治疗是重要的。晚期钆增强磁共振成像(LGE MRI)是一种有希望的技术,可视化和量化心肌梗塞(MI)和心房疤痕。由于LGE MRI的低图像质量和复杂的增强图案,MI和心房疤痕的自动化量可能是具有挑战性的。此外,与带金标准标签的其他序列LGE MRIS相比特别有限,这表示用于开发用于自动分割和LGE MRIS定量的新型算法的另一个障碍。本章旨在总结最先进的基于深度学习的多模态心脏图像分析的先进贡献。首先,我们向基于多序心脏MRI的心肌和病理分割介绍了两个基准工作。其次,提出了两种新的左心房瘢痕分割和从LGE MRI定量的新型框架。第三,我们为跨型心脏图像分割提出了三种无监督的域适应技术。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
超声(US)成像数据的分割和空间比对在头三个月获得的数据对于监测整个关键时期的人类胚胎生长和发育至关重要。当前的方法是手动或半自动的,因此非常耗时,容易出现错误。为了自动执行这些任务,我们提出了一个多ATLAS框架,用于使用深度学习,以最小的监督使用深度学习,以自动分割和空间对齐。我们的框架学会了将胚胎注册到地图集,该地图集由在胎龄(GA)范围内获取的美国图像组成,分段并在空间上与预定义的标准方向排列。由此,我们可以得出胚胎的分割,并将胚胎放在标准方向上。使用在8+0到12+6周GA的美国图像,并选择了八个受试者作为地图集。我们评估了不同的融合策略,以合并多个地图集:1)使用单个主题中的地图集训练框架,2)使用所有可用地图的数据训练框架和3)3)结合每个受试者训练的框架。为了评估性能,我们计算了测试集的骰子分数。我们发现,使用所有可用地图的训练框架优于结合的结合,与对单个主题进行培训的所有框架中的最佳框架相比,给出了类似的结果。此外,我们发现,从所有可用的地图中,从GA最接近的四个图像中选择图像,无论个人质量如何,都以0.72的中位数分数获得了最佳效果。我们得出的结论是,我们的框架可以准确地分割和空间对齐孕妇在3D US图像中对胚胎进行对齐,并且对于可用地图中存在的质量变化是可靠的。我们的代码可在以下网址公开获取:https://github.com/wapbastiaansen/multi-atlas-seg-reg。
translated by 谷歌翻译
可变形的图像注册对于许多医学图像分析是基础。准确图像注册的关键障碍在于图像外观变化,例如纹理,强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用注册的大脑图像中。最近,使用深神经网络的基于深度学习的注册方法(DLR)显示了计算效率,比基于传统优化的注册方法(ORS)快几个数量级。 DLR依靠一个全球优化的网络,该网络经过一组培训样本训练以实现更快的注册。但是,DLR倾向于无视ORS固有的目标对特异性优化,因此已经降低了对测试样品变化的适应性。这种限制对于注册出现较大的医学图像的限制是严重的,尤其是因为很少有现有的DLR明确考虑了外观的变化。在这项研究中,我们提出了一个外观调整网络(AAN),以增强DLR对外观变化的适应性。当我们集成到DLR中时,我们的AAN提供了外观转换,以减少注册过程中的外观变化。此外,我们提出了一个由解剖结构约束的损失函数,通过该函数,我们的AAN产生了解剖结构的转化。我们的AAN被目的设计为容易插入广泛的DLR中,并且可以以无监督和端到端的方式进行合作培训。我们用三个最先进的DLR评估了3D脑磁共振成像(MRI)的三个公共数据集(MRI)。结果表明,我们的AAN始终提高了现有的DLR,并且在注册精度上优于最先进的OR,同时向现有DLR增加了分数计算负载。
translated by 谷歌翻译
卷积神经网络(CNN)已经证明了它们对2D心脏超声图像进行分割的能力。然而,尽管近期取得了成功的成功,但是已经达到了端舒张和终结图像的观测器内变异性,CNNS仍然难以利用时间信息来在整个周期中提供准确和时间一致的分割图。需要这种持续性来准确描述心功能,这是诊断许多心血管疾病的必要步骤。在本文中,我们提出了一种学习2D +时间长轴心形形状的框架,使得分段序列可以受益于时间和解剖的一致性约束。我们的方法是一种后处理,其作为输入分段的超声心动图序列,其由任何最先进的方法产生,并以两个步骤来处理(i)根据心脏序列的整体动态识别时空不一致。 (ii)纠正不一致。心脏不一致的识别和纠正依赖于受约束的AutoEncoder培训,以学习生理学上可解释的心形状嵌入,在那里我们都可以检测和修复异常。我们在98个来自Camus DataSet的全循环序列上测试了我们的框架,这将与本文一起播放。我们的时间正则化方法不仅可以提高整个序列的分割的准确性,而且还强制执行时间和解剖常量。
translated by 谷歌翻译
全身动态PET中的受试者运动引入了框架间的不匹配,并严重影响参数成像。传统的非刚性注册方法通常在计算上是强度且耗时的。深度学习方法在快速速度方面实现高精度方面是有希望的,但尚未考虑示踪剂分布变化或整体范围。在这项工作中,我们开发了一个无监督的自动深度学习框架,以纠正框架间的身体运动。运动估计网络是一个卷积神经网络,具有联合卷积长的短期记忆层,充分利用动态的时间特征和空间信息。我们的数据集在90分钟的FDG全身动态PET扫描中包含27个受试者。与传统和深度学习基线相比,具有9倍的交叉验证,我们证明了拟议的网络在增强的定性和定量空间对齐方面获得了卓越的性能在显着降低参数拟合误差中。我们还展示了拟议的运动校正方法的潜力来影响对估计参数图像的下游分析,从而提高了将恶性与良性多代谢区域区分开的能力。一旦受过培训,我们提出的网络的运动估计推理时间比常规注册基线快460倍,表明其潜力很容易应用于临床环境中。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
最近,已广泛研究了基于深度学习的方法,以进行可变形的图像注册任务。但是,大多数努力将复合图像表示形式直接映射到通过卷积神经网络的空间转换,而忽略了其捕获空间对应关系的有限能力。另一方面,变压器可以更好地表征与注意机制的空间关系,其远程依赖性可能对注册任务有害,在这种情况下,距离太大的体素不太可能是相应的对。在这项研究中,我们提出了一个新型的变形器模块,以及用于可变形图像配准任务的多尺度框架。变形器模块旨在通过将位移矢量预测作为几个碱基的加权总和来促进从图像表示到空间转换的映射。借助多尺度框架以粗略的方式预测位移字段,与传统和基于学习的方法相比,可以实现卓越的性能。进行了两个公共数据集的全面实验,以证明所提出的变形器模块以及多规模框架的有效性。
translated by 谷歌翻译