背景:心肌灌注SPECT(MPS)对左心室(LV)功能的评估依赖于准确的心肌分割。本文的目的是开发和验证一种新的方法,该方法将深度学习与形状先验结合在一起,以精确提取LV心肌以自动测量LV功能参数。方法:开发了与形状变形模块集成三维(3D)V-NET的分割体系结构。使用动态编程(DP)算法生成的形状先验,然后在模型训练期间限制并指导模型输出,以快速收敛和改善性能。分层的5倍交叉验证用于训练和验证我们的模型。结果:我们提出的方法的结果与地面真理的结果一致。我们提出的模型的骰子相似性系数(DSC)为0.9573(0.0244),0.9821(0.0137)和0.9903(0.0041),Hausdorff距离(HD)6.7529(2.7334)(2.7334)mm,7.2507(3.2507(3.1952)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MM,和7.6122 3.0134)MM分别提取心内膜,心肌和心外膜。结论:我们提出的方法在提取LV心肌轮廓和评估LV功能方面具有很高的精度。
translated by 谷歌翻译
Background. Functional assessment of right ventricle (RV) using gated myocardial perfusion single-photon emission computed tomography (MPS) heavily relies on the precise extraction of right ventricular contours. In this paper, we present a new deep-learning-based model integrating both the spatial and temporal features in gated MPS images to perform the segmentation of the RV epicardium and endocardium. Methods. By integrating the spatial features from each cardiac frame of the gated MPS and the temporal features from the sequential cardiac frames of the gated MPS, we developed a Spatial-Temporal V-Net (ST-VNet) for automatic extraction of RV endocardial and epicardial contours. In the ST-VNet, a V-Net is employed to hierarchically extract spatial features, and convolutional long-term short-term memory (ConvLSTM) units are added to the skip-connection pathway to extract the temporal features. The input of the ST-VNet is ECG-gated sequential frames of the MPS images and the output is the probability map of the epicardial or endocardial masks. A Dice similarity coefficient (DSC) loss which penalizes the discrepancy between the model prediction and the ground truth was adopted to optimize the segmentation model. Results. Our segmentation model was trained and validated on a retrospective dataset with 45 subjects, and the cardiac cycle of each subject was divided into 8 gates. The proposed ST-VNet achieved a DSC of 0.8914 and 0.8157 for the RV epicardium and endocardium segmentation, respectively. The mean absolute error, the mean squared error, and the Pearson correlation coefficient of the RV ejection fraction (RVEF) between the ground truth and the model prediction were 0.0609, 0.0830, and 0.6985. Conclusion. Our proposed ST-VNet is an effective model for RV segmentation. It has great promise for clinical use in RV functional assessment.
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
Delineation of the left ventricular cavity, myocardium and right ventricle from cardiac magnetic resonance images (multi-slice 2D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly-available and fully-annotated dataset for the purpose of Cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification O. Bernard and F. Cervenansky are with the
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)的左心房(LA)和心房瘢痕分割是临床实践中的重要任务。 %,引导消融治疗和预测心房颤动(AF)患者的治疗结果。然而,由于图像质量差,各种La形状,薄壁和周围增强区域,自动分割仍然具有挑战性。以前的方法通常独立解决了这两个任务,并忽略了洛杉矶和疤痕之间的内在空间关系。在这项工作中,我们开发了一个新的框架,即atrialjsqnet,其中La分段,在La表面上的瘢痕投影以及疤痕量化,在端到端的样式中进行。我们通过明确的表面投影提出了一种形状注意(SA),以利用LA和LA瘢痕之间的固有相关性。具体而言,SA方案嵌入到多任务架构中以执行联合LA分段和瘢痕量化。此外,引入了空间编码(SE)丢失以包含目标的连续空间信息,以便在预测的分割中减少嘈杂的斑块。我们从Miccai2018 La挑战中评估了60 LGE MRIS上提出的框架。在公共数据集上的广泛实验表明了拟议的ATRIALJSQNET的效果,从而实现了最先进的竞争性能。明确探索了LA分割和瘢痕量化之间的相关性,并对这两个任务显示出显着的性能改进。一旦稿件接受通过https://zmiclab.github.io/projects.html,就会公开发布的代码和结果。
translated by 谷歌翻译
从侵入性冠状动脉造影(ICA)中准确提取冠状动脉(ICA)在临床决策中对于冠状动脉疾病的诊断和风险分层(CAD)很重要。在这项研究中,我们开发了一种使用深度学习来自动提取冠状动脉腔的方法。方法。提出了一个深度学习模型U-NET 3+,其中包含了全面的跳过连接和深度监督,以自动从ICAS中自动提取冠状动脉。在这个新型的冠状动脉提取框架中采用了转移学习和混合损失功能。结果。使用了一个包含从210名患者获得的616个ICA的数据集。在技​​术评估中,U-NET 3+的骰子得分为0.8942,灵敏度为0.8735,高于U-NET ++(骰子得分:0.8814:0.8814,灵敏度为0.8331)和U-net(骰子分数) :0.8799,灵敏度为0.8305)。结论。我们的研究表明,U-NET 3+优于其他分割框架,用于自动从ICA中提取冠状动脉。该结果表明了临床使用的巨大希望。
translated by 谷歌翻译
超声(US)成像数据的分割和空间比对在头三个月获得的数据对于监测整个关键时期的人类胚胎生长和发育至关重要。当前的方法是手动或半自动的,因此非常耗时,容易出现错误。为了自动执行这些任务,我们提出了一个多ATLAS框架,用于使用深度学习,以最小的监督使用深度学习,以自动分割和空间对齐。我们的框架学会了将胚胎注册到地图集,该地图集由在胎龄(GA)范围内获取的美国图像组成,分段并在空间上与预定义的标准方向排列。由此,我们可以得出胚胎的分割,并将胚胎放在标准方向上。使用在8+0到12+6周GA的美国图像,并选择了八个受试者作为地图集。我们评估了不同的融合策略,以合并多个地图集:1)使用单个主题中的地图集训练框架,2)使用所有可用地图的数据训练框架和3)3)结合每个受试者训练的框架。为了评估性能,我们计算了测试集的骰子分数。我们发现,使用所有可用地图的训练框架优于结合的结合,与对单个主题进行培训的所有框架中的最佳框架相比,给出了类似的结果。此外,我们发现,从所有可用的地图中,从GA最接近的四个图像中选择图像,无论个人质量如何,都以0.72的中位数分数获得了最佳效果。我们得出的结论是,我们的框架可以准确地分割和空间对齐孕妇在3D US图像中对胚胎进行对齐,并且对于可用地图中存在的质量变化是可靠的。我们的代码可在以下网址公开获取:https://github.com/wapbastiaansen/multi-atlas-seg-reg。
translated by 谷歌翻译
对骨关节炎(OA)的磁共振成像(MRI)扫描的客观评估可以解决当前OA评估的局限性。 OA客观评估是必需的骨,软骨和关节液的分割。大多数提出的分割方法都不执行实例分割,并且遭受了类不平衡问题。这项研究部署了蒙版R-CNN实例分割并改进了IT(改进的面罩R-CNN(IMASKRCNN)),以获得与OA相关组织的更准确的广义分割。该方法的训练和验证是使用骨关节炎倡议(OAI)数据集的500次MRI膝盖和有症状髋关节OA患者的97次MRI扫描进行的。掩盖R-CNN的三个修改产生了iMaskRCNN:添加第二个Roialigned块,在掩码标先中添加了额外的解码器层,并通过跳过连接将它们连接起来。使用Hausdorff距离,骰子评分和变异系数(COV)评估结果。与面膜RCNN相比,iMaskRCNN导致骨骼和软骨分割的改善,这表明股骨的骰子得分从95%增加到98%,胫骨的95%到97%,股骨软骨的71%至80%,81%和81%胫骨软骨的%至82%。对于积液检测,iMaskRCNN 72%比MaskRCNN 71%改善了骰子。 Reader1和Mask R-CNN(0.33),Reader1和ImaskRCNN(0.34),Reader2和Mask R-CNN(0.22),Reader2和iMaskRCNN(0.29)之间的积液检测的COV值(0.34),读取器2和mask r-CNN(0.22)接近COV之间,表明人类读者与蒙版R-CNN和ImaskRCNN之间的一致性很高。蒙版R-CNN和ImaskRCNN可以可靠,同时提取与OA有关的不同规模的关节组织,从而为OA的自动评估构成基础。 iMaskRCNN结果表明,修改改善了边缘周围的网络性能。
translated by 谷歌翻译
在核成像中,有限的分辨率会导致影响图像清晰度和定量准确性的部分体积效应(PVE)。已证明来自CT或MRI的高分辨率解剖信息的部分体积校正(PVC)已被证明是有效的。但是,这种解剖学引导的方法通常需要乏味的图像注册和分割步骤。由于缺乏具有高端CT和相关运动伪像的混合体SPECT/CT扫描仪,因此很难获得准确的分段器官模板,尤其是在心脏SPECT成像中。轻微的错误注册/错误分段将导致PVC后的图像质量严重降解。在这项工作中,我们开发了一种基于深度学习的方法,用于快速心脏SPECT PVC,而无需解剖信息和相关的器官分割。所提出的网络涉及密集连接的多维动态机制,即使网络经过充分训练,也可以根据输入图像对卷积内核进行调整。引入了心脏内血容量(IMBV)作为网络优化的附加临床损失函数。提出的网络表明,使用Technetium-99M标记的红细胞在GE发现NM/CT 570C专用心脏SPECT扫描仪上获得的28个犬类研究表现有希望的表现。这项工作表明,与没有这种机制的同一网络相比,具有密集连接的动态机制的提议网络产生了较高的结果。结果还表明,没有解剖信息的提出的网络可以与解剖学引导的PVC方法产生的图像产生具有统计上可比的IMBV测量的图像,这可能有助于临床翻译。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
Solving variational image segmentation problems with hidden physics is often expensive and requires different algorithms and manually tunes model parameter. The deep learning methods based on the U-Net structure have obtained outstanding performances in many different medical image segmentation tasks, but designing such networks requires a lot of parameters and training data, not always available for practical problems. In this paper, inspired by traditional multi-phase convexity Mumford-Shah variational model and full approximation scheme (FAS) solving the nonlinear systems, we propose a novel variational-model-informed network (denoted as FAS-Unet) that exploits the model and algorithm priors to extract the multi-scale features. The proposed model-informed network integrates image data and mathematical models, and implements them through learning a few convolution kernels. Based on the variational theory and FAS algorithm, we first design a feature extraction sub-network (FAS-Solution module) to solve the model-driven nonlinear systems, where a skip-connection is employed to fuse the multi-scale features. Secondly, we further design a convolution block to fuse the extracted features from the previous stage, resulting in the final segmentation possibility. Experimental results on three different medical image segmentation tasks show that the proposed FAS-Unet is very competitive with other state-of-the-art methods in qualitative, quantitative and model complexity evaluations. Moreover, it may also be possible to train specialized network architectures that automatically satisfy some of the mathematical and physical laws in other image problems for better accuracy, faster training and improved generalization.The code is available at \url{https://github.com/zhuhui100/FASUNet}.
translated by 谷歌翻译
从电影心脏磁共振(CMR)成像中恢复心脏的3D运动可以评估区域心肌功能,对于理解和分析心血管疾病很重要。但是,3D心脏运动估计是具有挑战性的,因为获得的Cine CMR图像通常是2D切片,它限制了对整个平面运动的准确估计。为了解决这个问题,我们提出了一个新颖的多视图运动估计网络(Mulvimotion),该网络集成了以短轴和长轴平面获取的2D Cine CMR图像,以学习心脏的一致性3D运动场。在提出的方法中,构建了一个混合2D/3D网络,以通过从多视图图像中学习融合表示形式来生成密集的3D运动场。为了确保运动估计在3D中保持一致,在训练过程中引入了形状正则化模块,其中利用了来自多视图图像的形状信息,以提供3D运动估计的弱监督。我们对来自英国生物银行研究的580名受试者的2D Cine CMR图像进行了广泛评估,用于左心室心肌的3D运动跟踪。实验结果表明,该方法在定量和定性上优于竞争方法。
translated by 谷歌翻译
超声成像在诊断血管病变中起重要作用。血管壁的准确分割对于预防,诊断和治疗血管疾病很重要。但是,现有方法的血管壁边界的定位不准确。分割误差发生在不连续的血管壁边界和黑暗边界中。为了克服这些问题,我们提出了一个新的边界限制网络(BDNET)。我们使用边界细化模块重新限制血管壁的边界以获得正确的边界位置。我们设计了特征提取模块来提取和融合多尺度特征和不同的接受场功能,以解决黑暗边界和不连续边界的问题。我们使用新的损失函数来优化模型。级别不平衡对模型优化的干扰可阻止获得更细致,更光滑的边界。最后,为了促进临床应用,我们将模型设计为轻量级。实验结果表明,与数据集的现有模型相比,我们的模型可实现最佳的分割结果,并显着降低记忆消耗。
translated by 谷歌翻译
脑MRI图像的登记需要解决变形领域,这对于对准复杂的脑组织,例如皮质核等,这是极其困难的现有努力,该努力在具有微小运动的中间子场中分解目标变形领域,即逐步登记阶段或较低的分辨率,即全尺寸变形场的粗析估计。在本文中,我们认为这些努力不是相互排斥的,并为普通和粗良好的方式同时提出统一的脑MRI登记统一框架。具体地,在双编码器U-Net上构建,定制移动的MRI对被编码和解码成从粗略到精细的多尺度变形子字段。每个解码块包含两个提出的新颖模块:i)在变形场积分(DFI)中,计算单个集成子字段,翘曲,其等同于来自所有先前解码块的子字段逐渐翘曲,并且II)非刚性特征融合(NFF),固定移动对的特征由DFI集成子场对齐,然后融合以预测更精细的子场。利用DFI和NFF,目标变形字段被修改为多尺度子场,其中较粗糙的字段缓解了更精细的一个和更精细的字段的估计,以便构成以前粗糙的较粗糙的那些错位。私人和公共数据集的广泛和全面的实验结果展示了脑MRI图像的优越的登记性能,仅限于逐步登记和粗略估计,平均骰子的粗略估计数量在最多8%上升。
translated by 谷歌翻译
Deep learning methods have contributed substantially to the rapid advancement of medical image segmentation, the quality of which relies on the suitable design of loss functions. Popular loss functions, including the cross-entropy and dice losses, often fall short of boundary detection, thereby limiting high-resolution downstream applications such as automated diagnoses and procedures. We developed a novel loss function that is tailored to reflect the boundary information to enhance the boundary detection. As the contrast between segmentation and background regions along the classification boundary naturally induces heterogeneity over the pixels, we propose the piece-wise two-sample t-test augmented (PTA) loss that is infused with the statistical test for such heterogeneity. We demonstrate the improved boundary detection power of the PTA loss compared to benchmark losses without a t-test component.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
前列腺活检和图像引导的治疗程序通常是在与磁共振图像(MRI)的超声指导下进行的。准确的图像融合依赖于超声图像上前列腺的准确分割。然而,超声图像中降低的信噪比和工件(例如,斑点和阴影)限制了自动前列腺分割技术的性能,并将这些方法推广到新的图像域是本质上很难的。在这项研究中,我们通过引入一种新型的2.5D深神经网络来解决这些挑战,用于超声图像上的前列腺分割。我们的方法通过组合有监督的域适应技术和知识蒸馏损失,解决了转移学习和填充方法的局限性(即,在更新模型权重时,在更新模型权重时的性能下降)。知识蒸馏损失允许保留先前学习的知识,并在新数据集上的模型填充后降低性能下降。此外,我们的方法依赖于注意模块,该模块认为模型特征定位信息以提高分割精度。我们对一个机构的764名受试者进行了培训,并仅使用后续机构中的十个受试者对我们的模型进行了审核。我们分析了方法在三个大型数据集上的性能,其中包括来自三个不同机构的2067名受试者。我们的方法达到了平均骰子相似性系数(骰子)为$ 94.0 \ pm0.03 $,而Hausdorff距离(HD95)为2.28 $ mm $,在第一机构的独立受试者中。此外,我们的模型在其他两个机构的研究中都很好地概括了(骰子:$ 91.0 \ pm0.03 $; hd95:3.7 $ mm $ and Dice:$ 82.0 \ pm0.03 $; hd95 $; hd95:7.1 $ mm $)。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
医学成像数据中的胰腺分割对于临床胰腺诊断和治疗至关重要。然而,即使是利用完全跨斜神经网络(FCNS)的最新算法,胰腺形状和体积的较大人口变化也会引起巨大的分割困难。具体而言,胰腺分割遭受2D方法中空间信息的损失,以及3D方法的高计算成本。为了减轻这些问题,我们提出了一个概率的映射引导的双向复发性UNET(PBR-UNET)体系结构,该体系结构融合了板板内的信息和层间概率图,然后将其融合到本地3D混合正则化方案中,随后是BI - 方向复发网络优化。 PBR-UNET方法由一个初始估计模块组成,用于有效提取像素级概率图和主要分割模块,用于通过2.5D U-NET体系结构传播混合信息。具体而言,通过将输入图像与相邻切片的概率图组合到多通道混合数据中,然后层次汇总整个分割网络的混合信息,来推断本地3D信息。此外,开发了双向反复优化机制,以更新远期和向后方向的混合信息。这允许拟议的网络充分利用本地上下文信息。对NIH Pancreas-CT数据集进行了定量和定性评估,与其他最新方法相比,我们提出的PBR-UNET方法获得了更好的分割结果,计算成本较少。
translated by 谷歌翻译