超声成像在诊断血管病变中起重要作用。血管壁的准确分割对于预防,诊断和治疗血管疾病很重要。但是,现有方法的血管壁边界的定位不准确。分割误差发生在不连续的血管壁边界和黑暗边界中。为了克服这些问题,我们提出了一个新的边界限制网络(BDNET)。我们使用边界细化模块重新限制血管壁的边界以获得正确的边界位置。我们设计了特征提取模块来提取和融合多尺度特征和不同的接受场功能,以解决黑暗边界和不连续边界的问题。我们使用新的损失函数来优化模型。级别不平衡对模型优化的干扰可阻止获得更细致,更光滑的边界。最后,为了促进临床应用,我们将模型设计为轻量级。实验结果表明,与数据集的现有模型相比,我们的模型可实现最佳的分割结果,并显着降低记忆消耗。
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
自动图像分割技术对于视觉分析至关重要。自动编码器体系结构在各种图像分割任务中具有令人满意的性能。但是,基于卷积神经网络(CNN)的自动编码器似乎在提高语义分割的准确性方面遇到了瓶颈。增加前景和背景之间的类间距离是分割网络的固有特征。但是,分割网络过于关注前景和背景之间的主要视觉差异,而忽略了详细的边缘信息,从而导致边缘分割的准确性降低。在本文中,我们提出了一个基于多任务学习的轻量级端到端细分框架,称为Edge Coasity AutoCododer Network(EAA-NET),以提高边缘细分能力。我们的方法不仅利用分割网络来获得类间特征,而且还采用重建网络来提取前景中的类内特征。我们进一步设计了一个阶层和类间特征融合模块-I2融合模块。 I2融合模块用于合并课内和类间特征,并使用软注意机制去除无效的背景信息。实验结果表明,我们的方法在医疗图像分割任务中的表现良好。 EAA-NET易于实现,并且计算成本较小。
translated by 谷歌翻译
由于不规则的形状,正常和感染组织之间的各种尺寸和无法区分的边界,仍然是一种具有挑战性的任务,可以准确地在CT图像上进行Covid-19的感染病变。在本文中,提出了一种新的分段方案,用于通过增强基于编码器 - 解码器架构的不同级别的监督信息和融合多尺度特征映射来感染Covid-19。为此,提出了深入的协作监督(共同监督)计划,以指导网络学习边缘和语义的特征。更具体地,首先设计边缘监控模块(ESM),以通过将边缘监督信息结合到初始阶段的下采样的初始阶段来突出显示低电平边界特征。同时,提出了一种辅助语义监督模块(ASSM)来加强通过将掩码监督信息集成到稍后阶段来加强高电平语义信息。然后,通过使用注意机制来扩展高级和低电平特征映射之间的语义间隙,开发了一种注意融合模块(AFM)以融合不同级别的多个规模特征图。最后,在四个各种Covid-19 CT数据集上证明了所提出的方案的有效性。结果表明,提出的三个模块都是有希望的。基于基线(RESUNT),单独使用ESM,ASSM或AFM可以分别将骰子度量增加1.12 \%,1.95 \%,1.63 \%,而在我们的数据集中,通过将三个模型结合在一起可以上升3.97 \% 。与各个数据集的现有方法相比,所提出的方法可以在某些主要指标中获得更好的分段性能,并可实现最佳的泛化和全面的性能。
translated by 谷歌翻译
Mitosis nuclei count is one of the important indicators for the pathological diagnosis of breast cancer. The manual annotation needs experienced pathologists, which is very time-consuming and inefficient. With the development of deep learning methods, some models with good performance have emerged, but the generalization ability should be further strengthened. In this paper, we propose a two-stage mitosis segmentation and classification method, named SCMitosis. Firstly, the segmentation performance with a high recall rate is achieved by the proposed depthwise separable convolution residual block and channel-spatial attention gate. Then, a classification network is cascaded to further improve the detection performance of mitosis nuclei. The proposed model is verified on the ICPR 2012 dataset, and the highest F-score value of 0.8687 is obtained compared with the current state-of-the-art algorithms. In addition, the model also achieves good performance on GZMH dataset, which is prepared by our group and will be firstly released with the publication of this paper. The code will be available at: https://github.com/antifen/mitosis-nuclei-segmentation.
translated by 谷歌翻译
肝脏的准确细分是诊断疾病的先决条件。自动分割是计算机辅助检测和肝病诊断的重要应用。近年来,医学图像的自动化处理已经取得了突破。然而,腹部扫描CT图像的低对比度和肝脏形态的复杂性使得精确的自动分割具有挑战性。在本文中,我们提出了RA V-NET,这是基于U-Net的改进的医学图像自动分割模型。它有以下三个主要创新。建议Cofres模块(复合原始功能剩余模块)。通过更复杂的卷积层和跳过连接,使其获得更高级别的图像特征提取功能并防止梯度消失或爆炸。建议AR模块(注意恢复模块)以减少模型的计算工作。另外,通过调整通道和LSTM卷积来感测编码和解码模块的数据像素之间的空间特征。最后,有效地保留了图像特征。介绍了CA模块(通道注意模块),用于提取具有依赖性的相关通道,并通过矩阵点产品加强它们,同时在没有依赖性的情况下削弱无关的通道。达到关注的目的。 LSTM卷积和CA模块提供的注意机制是强证神经网络性能的保证。 U-Net网络的准确性:0.9862,精确度:0.9118,DSC:0.8547,JSC:0.82。 RA V-NET的评估指标,精度:0.9968,精确度:0.9597,DSC:0.9654,JSC:0.9414。分割效果的最代表性度量是DSC,其在U-NET上改善0.1107,JSC改善0.1214。
translated by 谷歌翻译
Covid-19的传播给世界带来了巨大的灾难,自动分割感染区域可以帮助医生快速诊断并减少工作量。但是,准确和完整的分割面临一些挑战,例如散射的感染区分布,复杂的背景噪声和模糊的分割边界。为此,在本文中,我们提出了一个新的网络,用于从CT图像(名为BCS-NET)的自动covid-19肺部感染分割,该网络考虑了边界,上下文和语义属性。 BCS-NET遵循编码器架构,更多的设计集中在解码器阶段,该阶段包括三个逐渐边界上下文 - 语义重建(BCSR)块。在每个BCSR块中,注意引导的全局上下文(AGGC)模块旨在通过突出显示重要的空间和边界位置并建模全局上下文依赖性来学习解码器最有价值的编码器功能。此外,语义指南(SG)单元通过在中间分辨率上汇总多规模的高级特征来生成语义指南图来完善解码器特征。广泛的实验表明,我们提出的框架在定性和定量上都优于现有竞争对手。
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
尽管已经开发了疫苗,并且国家疫苗接种率正在稳步提高,但2019年冠状病毒病(COVID-19)仍对世界各地的医疗保健系统产生负面影响。在当前阶段,从CT图像中自动分割肺部感染区域对于诊断和治疗COVID-19至关重要。得益于深度学习技术的发展,已经提出了一些针对肺部感染细分的深度学习解决方案。但是,由于分布分布,复杂的背景干扰和界限模糊,现有模型的准确性和完整性仍然不令人满意。为此,我们在本文中提出了一个边界引导的语义学习网络(BSNET)。一方面,结合顶级语义保存和渐进式语义集成的双分支语义增强模块旨在建模不同的高级特征之间的互补关系,从而促进产生更完整的分割结果。另一方面,提出了镜像对称边界引导模块,以以镜像对称方式准确检测病变区域的边界。公开可用数据集的实验表明,我们的BSNET优于现有的最新竞争对手,并实现了44 fps的实时推理速度。
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
玻璃在现实世界中非常普遍。受玻璃区域的不确定性以及玻璃背后的各种复杂场景的影响,玻璃的存在对许多计算机视觉任务构成了严重的挑战,从而使玻璃分割成为重要的计算机视觉任务。玻璃没有自己的视觉外观,而只能传输/反映其周围环境的外观,从而与其他常见对象根本不同。为了解决此类具有挑战性的任务,现有方法通常会探索并结合深网络中不同特征级别的有用线索。由于存在级别不同的特征之间的特征差距,即,深层特征嵌入了更多高级语义,并且更好地定位目标对象,而浅层特征具有更大的空间尺寸,并保持更丰富,更详细的低级信息,因此,将这些特征融合到天真的融合将导致亚最佳溶液。在本文中,我们将有效的特征融合到两个步骤中,以朝着精确的玻璃分割。首先,我们试图通过开发可区分性增强(DE)模块来弥合不同级别特征之间的特征差距,该模块使特定于级别的特征成为更具歧视性的表示,从而减轻了融合不兼容的特征。其次,我们设计了一个基于焦点和探索的融合(FEBF)模块,以通过突出显示常见并探索级别差异特征之间的差异,从而在融合过程中丰富挖掘有用的信息。
translated by 谷歌翻译
人行道表面数据的获取和评估在路面条件评估中起着至关重要的作用。在本文中,提出了一个称为RHA-NET的自动路面裂纹分割的有效端到端网络,以提高路面裂纹分割精度。 RHA-NET是通过将残留块(重阻)和混合注意块集成到编码器架构结构中来构建的。这些重组用于提高RHA-NET提取高级抽象特征的能力。混合注意块旨在融合低级功能和高级功能,以帮助模型专注于正确的频道和裂纹区域,从而提高RHA-NET的功能表现能力。构建并用于训练和评估所提出的模型的图像数据集,其中包含由自设计的移动机器人收集的789个路面裂纹图像。与其他最先进的网络相比,所提出的模型在全面的消融研究中验证了添加残留块和混合注意机制的功能。此外,通过引入深度可分离卷积生成的模型的轻加权版本可以更好地实现性能和更快的处理速度,而U-NET参数数量的1/30。开发的系统可以在嵌入式设备Jetson TX2(25 fps)上实时划分路面裂纹。实时实验拍摄的视频将在https://youtu.be/3xiogk0fig4上发布。
translated by 谷歌翻译
Transformer-based models have been widely demonstrated to be successful in computer vision tasks by modelling long-range dependencies and capturing global representations. However, they are often dominated by features of large patterns leading to the loss of local details (e.g., boundaries and small objects), which are critical in medical image segmentation. To alleviate this problem, we propose a Dual-Aggregation Transformer Network called DuAT, which is characterized by two innovative designs, namely, the Global-to-Local Spatial Aggregation (GLSA) and Selective Boundary Aggregation (SBA) modules. The GLSA has the ability to aggregate and represent both global and local spatial features, which are beneficial for locating large and small objects, respectively. The SBA module is used to aggregate the boundary characteristic from low-level features and semantic information from high-level features for better preserving boundary details and locating the re-calibration objects. Extensive experiments in six benchmark datasets demonstrate that our proposed model outperforms state-of-the-art methods in the segmentation of skin lesion images, and polyps in colonoscopy images. In addition, our approach is more robust than existing methods in various challenging situations such as small object segmentation and ambiguous object boundaries.
translated by 谷歌翻译
利用深度学习的水提取需要精确的像素级标签。然而,在像素级别标记高分辨率遥感图像非常困难。因此,我们研究如何利用点标签来提取水体并提出一种名为邻居特征聚合网络(NFANET)的新方法。与PixelLevel标签相比,Point标签更容易获得,但它们会失去许多信息。在本文中,我们利用了局部水体的相邻像素之间的相似性,并提出了邻居采样器来重塑遥感图像。然后,将采样的图像发送到网络以进行特征聚合。此外,我们使用改进的递归训练算法进一步提高提取精度,使水边界更加自然。此外,我们的方法利用相邻特征而不是全局或本地特征来学习更多代表性。实验结果表明,所提出的NFANET方法不仅优于其他研究的弱监管方法,而且还获得与最先进的结果相似。
translated by 谷歌翻译
Semantic segmentation of UAV aerial remote sensing images provides a more efficient and convenient surveying and mapping method for traditional surveying and mapping. In order to make the model lightweight and improve a certain accuracy, this research developed a new lightweight and efficient network for the extraction of ground features from UAV aerial remote sensing images, called LDMCNet. Meanwhile, this research develops a powerful lightweight backbone network for the proposed semantic segmentation model. It is called LDCNet, and it is hoped that it can become the backbone network of a new generation of lightweight semantic segmentation algorithms. The proposed model uses dual multi-scale context modules, namely the Atrous Space Pyramid Pooling module (ASPP) and the Object Context Representation module (OCR). In addition, this research constructs a private dataset for semantic segmentation of aerial remote sensing images from drones. This data set contains 2431 training sets, 945 validation sets, and 475 test sets. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G floating-point operations (FLOPs), achieving an average intersection-over-union ratio (mIoU) of 71.12%. 7.88% higher than the baseline model. In order to verify the effectiveness of the proposed model, training on the public datasets "LoveDA" and "CITY-OSM" also achieved excellent results, achieving mIoU of 65.27% and 74.39%, respectively.
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
肝癌是世界上最常见的恶性疾病之一。 CT图像中肝脏肿瘤和血管的分割和标记可以为肝脏肿瘤诊断和手术干预中的医生提供便利。在过去的几十年中,基于深度学习的自动CT分段方法在医学领域得到了广泛的关注。在此期间出现了许多最先进的分段算法。然而,大多数现有的分割方法只关心局部特征背景,并在医学图像的全局相关性中具有感知缺陷,这显着影响了肝脏肿瘤和血管的分割效果。我们引入了一种基于变压器和SebottLenet的多尺度特征上下文融合网络,称为TransFusionNet。该网络可以准确地检测和识别肝脏容器的兴趣区域的细节,同时它可以通过利用CT图像的全球信息来改善肝肿瘤的形态边缘的识别。实验表明,TransFusionNet优于公共数据集LITS和3DIRCADB以及我们的临床数据集的最先进方法。最后,我们提出了一种基于训练模型的自动三维重建算法。该算法可以在1秒内快速准确地完成重建。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译