机器学习(ML)已广泛用于无线网络中的有效资源分配(RA)。虽然在小型和简单的网络上实现了极好的性能,但是当发生异质性并且网络尺寸扩展时,大多数现有的基于ML的方法都面临困难。在本文中,专注于在异构设备到设备(D2D)网络中的功率控制/波束成形(PC / BF)上,我们提出了一种名为异构干扰图神经网络(HIGNN)的新型无监督的学习框架来处理这些挑战。首先,我们将多样化的链接特征和干扰关系与异构图形。然后,建议在与相邻链路的有限信息交换之后授权每个链接以获得其各个传输方案。值得注意的是,HIGNN在小型网络上培训后,HIGNN可扩展到具有稳健性能的尺寸的无线网络。数值结果表明,与最先进的基准相比,HIGNN在提供了强大的性能时实现了更高的执行效率。
translated by 谷歌翻译
由于处理非covex公式的能力,深入研究深度学习(DL)技术以优化多用户多输入单输出(MU-MISO)下行链接系统。但是,现有的深神经网络(DNN)的固定计算结构在系统大小(即天线或用户的数量)方面缺乏灵活性。本文开发了一个双方图神经网络(BGNN)框架,这是一种可扩展的DL溶液,旨在多端纳纳波束形成优化。首先,MU-MISO系统以两分图为特征,其中两个不相交的顶点集(由传输天线和用户组成)通过成对边缘连接。这些顶点互连状态是通过通道褪色系数建模的。因此,将通用的光束优化过程解释为重量双分图上的计算任务。这种方法将波束成型的优化过程分为多个用于单个天线顶点和用户顶点的子操作。分离的顶点操作导致可扩展的光束成型计算,这些计算不变到系统大小。顶点操作是由一组DNN模块实现的,这些DNN模块共同构成了BGNN体系结构。在所有天线和用户中都重复使用相同的DNN,以使所得的学习结构变得灵活地适合网络大小。 BGNN的组件DNN在许多具有随机变化的网络尺寸的MU-MISO配置上进行了训练。结果,训练有素的BGNN可以普遍应用于任意的MU-MISO系统。数值结果验证了BGNN框架比常规方法的优势。
translated by 谷歌翻译
Deep learning-based approaches have been developed to solve challenging problems in wireless communications, leading to promising results. Early attempts adopted neural network architectures inherited from applications such as computer vision. They often yield poor performance in large scale networks (i.e., poor scalability) and unseen network settings (i.e., poor generalization). To resolve these issues, graph neural networks (GNNs) have been recently adopted, as they can effectively exploit the domain knowledge, i.e., the graph topology in wireless communications problems. GNN-based methods can achieve near-optimal performance in large-scale networks and generalize well under different system settings, but the theoretical underpinnings and design guidelines remain elusive, which may hinder their practical implementations. This paper endeavors to fill both the theoretical and practical gaps. For theoretical guarantees, we prove that GNNs achieve near-optimal performance in wireless networks with much fewer training samples than traditional neural architectures. Specifically, to solve an optimization problem on an $n$-node graph (where the nodes may represent users, base stations, or antennas), GNNs' generalization error and required number of training samples are $\mathcal{O}(n)$ and $\mathcal{O}(n^2)$ times lower than the unstructured multi-layer perceptrons. For design guidelines, we propose a unified framework that is applicable to general design problems in wireless networks, which includes graph modeling, neural architecture design, and theory-guided performance enhancement. Extensive simulations, which cover a variety of important problems and network settings, verify our theory and the effectiveness of the proposed design framework.
translated by 谷歌翻译
Learning precoding policies with neural networks enables low complexity online implementation, robustness to channel impairments, and joint optimization with channel acquisition. However, existing neural networks suffer from high training complexity and poor generalization ability when they are used to learn to optimize precoding for mitigating multi-user interference. This impedes their use in practical systems where the number of users is time-varying. In this paper, we propose a graph neural network (GNN) to learn precoding policies by harnessing both the mathematical model and the property of the policies. We first show that a vanilla GNN cannot well-learn pseudo-inverse of channel matrix when the numbers of antennas and users are large, and is not generalizable to unseen numbers of users. Then, we design a GNN by resorting to the Taylor's expansion of matrix pseudo-inverse, which allows for capturing the importance of the neighbored edges to be aggregated that is crucial for learning precoding policies efficiently. Simulation results show that the proposed GNN can well learn spectral efficient and energy efficient precoding policies in single- and multi-cell multi-user multi-antenna systems with low training complexity, and can be well generalized to the numbers of users.
translated by 谷歌翻译
As an efficient graph analytical tool, graph neural networks (GNNs) have special properties that are particularly fit for the characteristics and requirements of wireless communications, exhibiting good potential for the advancement of next-generation wireless communications. This article aims to provide a comprehensive overview of the interplay between GNNs and wireless communications, including GNNs for wireless communications (GNN4Com) and wireless communications for GNNs (Com4GNN). In particular, we discuss GNN4Com based on how graphical models are constructed and introduce Com4GNN with corresponding incentives. We also highlight potential research directions to promote future research endeavors for GNNs in wireless communications.
translated by 谷歌翻译
通信网络是当代社会中的重要基础设施。仍存在许多挑战,在该活性研究区域中不断提出新的解决方案。近年来,为了模拟网络拓扑,基于图形的深度学习在通信网络中的一系列问题中实现了最先进的性能。在本调查中,我们使用基于不同的图形的深度学习模型来审查快速增长的研究机构,例如,使用不同的图形深度学习模型。图表卷积和曲线图注意网络,在不同类型的通信网络中的各种问题中,例如,无线网络,有线网络和软件定义的网络。我们还为每项研究提供了一个有组织的问题和解决方案列表,并确定了未来的研究方向。据我们所知,本文是第一个专注于在涉及有线和无线场景的通信网络中应用基于图形的深度学习方法的调查。要跟踪后续研究,创建了一个公共GitHub存储库,其中相关文件将不断更新。
translated by 谷歌翻译
作为图形数据的有效神经网络模型,图形神经网络(GNN)最近找到了针对各种无线优化问题的成功应用程序。鉴于GNN的推理阶段可以自然地以分散的方式实施,因此GNN是下一代无线通信中分散控制/管理的潜在推动力。但是,由于在与GNN的分散推断期间,邻居之间的信息交流可能会发生隐私泄漏。为了解决这个问题,在本文中,我们分析并增强了无线网络中GNN分散推断的隐私。具体来说,我们采用当地的差异隐私作为指标,设计了新颖的隐私信号以及隐私保证的培训算法,以实现保护隐私的推论。我们还定义了SNR私人关系权衡功能,以分析无线网络中使用GNN的分散推理的性能上限。为了进一步提高沟通和计算效率,我们采用了空中计算技术,理论上证明了其在隐私保护方面的优势。通过对合成图数据的大量模拟,我们验证了理论分析,验证提出的隐私无线信号传导和隐私保证培训算法的有效性,并就实际实施提供一些指导。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
图形神经网络(GNN)是图形数据的有效的神经网络模型,广泛用于不同的领域,包括无线通信。与其他神经网络模型不同,GNN可以以分散的方式实现,其中邻居之间的信息交换,使其成为无线通信系统中分散控制的潜在强大的工具。然而,主要的瓶颈是无线频道损伤,其恶化了GNN的预测稳健性。为了克服这个障碍,我们在本文中分析和增强了不同无线通信系统中分散的GNN的鲁棒性。具体地,使用GNN二进制分类器作为示例,我们首先开发一种方法来验证预测是否稳健。然后,我们在未编码和编码的无线通信系统中分析分散的GNN二进制分类器的性能。为了解决不完美的无线传输并增强预测稳健性,我们进一步提出了用于上述两个通信系统的新型重传机制。通过仿真对合成图数据,我们验证了我们的分析,验证了提出的重传机制的有效性,并为实际实施提供了一些见解。
translated by 谷歌翻译
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
translated by 谷歌翻译
我们提出了一种基于图形神经网络(GNN)的端到端框架,以平衡通用网格中的功率流。优化被帧为监督的顶点回归任务,其中GNN培训以预测每个网格分支的电流和功率注入,从而产生功率流量平衡。通过将电网表示为与顶点的分支的线图,我们可以培训一个更准确和强大的GNN来改变底层拓扑。此外,通过使用专门的GNN层,我们能够构建一个非常深的架构,该架构占图表上的大街区,同时仅实现本地化操作。我们执行三个不同的实验来评估:i)使用深入GNN模型时使用本地化而不是全球运营的好处和趋势; ii)图形拓扑中对扰动的弹性;和iii)能力同时在多个网格拓扑上同时培训模型以及新的看不见网格的概括性的改进。拟议的框架是有效的,而且与基于深度学习的其他求解器相比,不仅对网格组件上的物理量而且对拓扑的物理量具有鲁棒性。
translated by 谷歌翻译
在本文中,我们旨在改善干扰限制的无线网络中超级可靠性和低延迟通信(URLLC)的服务质量(QoS)。为了在通道连贯性时间内获得时间多样性,我们首先提出了一个随机重复方案,该方案随机将干扰能力随机。然后,我们优化了每个数据包的保留插槽数量和重复数量,以最大程度地减少QoS违规概率,该概率定义为无法实现URLLC的用户百分比。我们构建了一个级联的随机边缘图神经网络(REGNN),以表示重复方案并开发一种无模型的无监督学习方法来训练它。我们在对称场景中使用随机几何形状分析了QoS违规概率,并应用基于模型的详尽搜索(ES)方法来找到最佳解决方案。仿真结果表明,在对称方案中,通过模型学习方法和基于模型的ES方法实现的QoS违规概率几乎相同。在更一般的情况下,级联的Regnn在具有不同尺度,网络拓扑,细胞密度和频率重复使用因子的无线网络中很好地概括了。在模型不匹配的情况下,它的表现优于基于模型的ES方法。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
6th Generation (6G) industrial wireless subnetworks are expected to replace wired connectivity for control operation in robots and production modules. Interference management techniques such as centralized power control can improve spectral efficiency in dense deployments of such subnetworks. However, existing solutions for centralized power control may require full channel state information (CSI) of all the desired and interfering links, which may be cumbersome and time-consuming to obtain in dense deployments. This paper presents a novel solution for centralized power control for industrial subnetworks based on Graph Neural Networks (GNNs). The proposed method only requires the subnetwork positioning information, usually known at the central controller, and the knowledge of the desired link channel gain during the execution phase. Simulation results show that our solution achieves similar spectral efficiency as the benchmark schemes requiring full CSI in runtime operations. Also, robustness to changes in the deployment density and environment characteristics with respect to the training phase is verified.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
由于图神经网络(GNN)的成功和异质信息网络的广泛应用,近年来,异质图学习近年来引起了极大的关注。已经提出了各种异质图神经网络,以概括GNN来处理异质图。不幸的是,这些方法通过各种复杂的模块对异质性进行建模。本文旨在提出一个简单而有效的框架,以使均质GNN具有足够的处理异质图的能力。具体而言,我们提出了基于关系嵌入的图形神经网络(RE-GNNS),该图形仅使用一个参数来嵌入边缘类型关系和自动连接的重要性。为了同时优化这些关系嵌入和其他参数,提出了一个梯度缩放因子来约束嵌入以收敛到合适的值。此外,我们从理论上证明,与基于元路径的异质GNN相比,我们的RE-GNN具有更高的表现力。关于节点分类任务的广泛实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
图形神经网络(GNN)在许多领域中显示出优异的应用,其中数据基本上表示为图(例如,化学,生物学,推荐系统)。在该静脉中,通信网络包括许多以图形结构方式(例如,拓扑,配置,交通流量)自然表示的许多基本组件。该职位文章将GNNS作为用于建模,控制和管理通信网络的基本工具。 GNN表示新一代的数据驱动模型,可以准确地学习和再现真实网络后面的复杂行为。因此,这种模型可以应用于各种网络用例,例如规划,在线优化或故障排除。 GNN在传统的神经网络上的主要优点在于在培训期间应用于其他网络和配置时的前所未有的泛化能力,这是实现用于网络实际数据驱动解决方案的关键特征。本文包括关于GNN的简要教程及其对通信网络的可能应用。为了展示这项技术的潜力,我们展示了两种用例,分别应用于有线和无线网络的最先进的GNN模型。最后,我们深入研究了这一小说研究区的关键开放挑战和机会。
translated by 谷歌翻译