Learning precoding policies with neural networks enables low complexity online implementation, robustness to channel impairments, and joint optimization with channel acquisition. However, existing neural networks suffer from high training complexity and poor generalization ability when they are used to learn to optimize precoding for mitigating multi-user interference. This impedes their use in practical systems where the number of users is time-varying. In this paper, we propose a graph neural network (GNN) to learn precoding policies by harnessing both the mathematical model and the property of the policies. We first show that a vanilla GNN cannot well-learn pseudo-inverse of channel matrix when the numbers of antennas and users are large, and is not generalizable to unseen numbers of users. Then, we design a GNN by resorting to the Taylor's expansion of matrix pseudo-inverse, which allows for capturing the importance of the neighbored edges to be aggregated that is crucial for learning precoding policies efficiently. Simulation results show that the proposed GNN can well learn spectral efficient and energy efficient precoding policies in single- and multi-cell multi-user multi-antenna systems with low training complexity, and can be well generalized to the numbers of users.
translated by 谷歌翻译
提高学习效率对于使用高度动态环境的无线通信中的深度神经网络(DNN)来学习资源分配至关重要。将域名知识纳入学习是处理此问题的有希望的方式,这是无线社区中的新兴主题。在本文中,我们首先简要概述了使用域知识的两种方法:引入数学模型或先前的知识来深入学习。然后,我们考虑一种关于无线任务中广泛存在的对称性的置换性价比。为了解释这种通用的先前如何利用,以提高学习效率,我们采取排名,共同对DNN的输入和输出共同排序。我们在子载波之间使用电力分配,概率的内容缓存和干扰协调,以说明通过利用属性来提高学习效率。从案例研究中,我们发现所需的训练样本实现给定的系统性能随着诸如有趣现象的子载波或内容的数量而降低:“样品硬化”。仿真结果表明,通过利用先验知识可以显着降低DNN中的训练样本,DNN中的自由参数和训练时间。排名后培训DNN所需的样本可以减少15美元\ SIM 2,400 $折叠,以在不使用之前的情况下实现与对应物相同的系统性能。
translated by 谷歌翻译
由于处理非covex公式的能力,深入研究深度学习(DL)技术以优化多用户多输入单输出(MU-MISO)下行链接系统。但是,现有的深神经网络(DNN)的固定计算结构在系统大小(即天线或用户的数量)方面缺乏灵活性。本文开发了一个双方图神经网络(BGNN)框架,这是一种可扩展的DL溶液,旨在多端纳纳波束形成优化。首先,MU-MISO系统以两分图为特征,其中两个不相交的顶点集(由传输天线和用户组成)通过成对边缘连接。这些顶点互连状态是通过通道褪色系数建模的。因此,将通用的光束优化过程解释为重量双分图上的计算任务。这种方法将波束成型的优化过程分为多个用于单个天线顶点和用户顶点的子操作。分离的顶点操作导致可扩展的光束成型计算,这些计算不变到系统大小。顶点操作是由一组DNN模块实现的,这些DNN模块共同构成了BGNN体系结构。在所有天线和用户中都重复使用相同的DNN,以使所得的学习结构变得灵活地适合网络大小。 BGNN的组件DNN在许多具有随机变化的网络尺寸的MU-MISO配置上进行了训练。结果,训练有素的BGNN可以普遍应用于任意的MU-MISO系统。数值结果验证了BGNN框架比常规方法的优势。
translated by 谷歌翻译
Deep learning-based approaches have been developed to solve challenging problems in wireless communications, leading to promising results. Early attempts adopted neural network architectures inherited from applications such as computer vision. They often yield poor performance in large scale networks (i.e., poor scalability) and unseen network settings (i.e., poor generalization). To resolve these issues, graph neural networks (GNNs) have been recently adopted, as they can effectively exploit the domain knowledge, i.e., the graph topology in wireless communications problems. GNN-based methods can achieve near-optimal performance in large-scale networks and generalize well under different system settings, but the theoretical underpinnings and design guidelines remain elusive, which may hinder their practical implementations. This paper endeavors to fill both the theoretical and practical gaps. For theoretical guarantees, we prove that GNNs achieve near-optimal performance in wireless networks with much fewer training samples than traditional neural architectures. Specifically, to solve an optimization problem on an $n$-node graph (where the nodes may represent users, base stations, or antennas), GNNs' generalization error and required number of training samples are $\mathcal{O}(n)$ and $\mathcal{O}(n^2)$ times lower than the unstructured multi-layer perceptrons. For design guidelines, we propose a unified framework that is applicable to general design problems in wireless networks, which includes graph modeling, neural architecture design, and theory-guided performance enhancement. Extensive simulations, which cover a variety of important problems and network settings, verify our theory and the effectiveness of the proposed design framework.
translated by 谷歌翻译
在带有频划分双链体(FDD)的常规多用户多用户多输入多输出(MU-MIMO)系统中,尽管高度耦合,但已单独设计了通道采集和预编码器优化过程。本文研究了下行链路MU-MIMO系统的端到端设计,其中包括试点序列,有限的反馈和预编码。为了解决这个问题,我们提出了一个新颖的深度学习(DL)框架,该框架共同优化了用户的反馈信息生成和基础站(BS)的预编码器设计。 MU-MIMO系统中的每个过程都被智能设计的多个深神经网络(DNN)单元所取代。在BS上,神经网络生成试验序列,并帮助用户获得准确的频道状态信息。在每个用户中,频道反馈操作是由单个用户DNN以分布方式进行的。然后,另一个BS DNN从用户那里收集反馈信息,并确定MIMO预编码矩阵。提出了联合培训算法以端到端的方式优化所有DNN单元。此外,还提出了一种可以避免针对可扩展设计的不同网络大小进行重新训练的培训策略。数值结果证明了与经典优化技术和其他常规DNN方案相比,提出的DL框架的有效性。
translated by 谷歌翻译
在本文中,我们旨在改善干扰限制的无线网络中超级可靠性和低延迟通信(URLLC)的服务质量(QoS)。为了在通道连贯性时间内获得时间多样性,我们首先提出了一个随机重复方案,该方案随机将干扰能力随机。然后,我们优化了每个数据包的保留插槽数量和重复数量,以最大程度地减少QoS违规概率,该概率定义为无法实现URLLC的用户百分比。我们构建了一个级联的随机边缘图神经网络(REGNN),以表示重复方案并开发一种无模型的无监督学习方法来训练它。我们在对称场景中使用随机几何形状分析了QoS违规概率,并应用基于模型的详尽搜索(ES)方法来找到最佳解决方案。仿真结果表明,在对称方案中,通过模型学习方法和基于模型的ES方法实现的QoS违规概率几乎相同。在更一般的情况下,级联的Regnn在具有不同尺度,网络拓扑,细胞密度和频率重复使用因子的无线网络中很好地概括了。在模型不匹配的情况下,它的表现优于基于模型的ES方法。
translated by 谷歌翻译
机器学习(ML)已广泛用于无线网络中的有效资源分配(RA)。虽然在小型和简单的网络上实现了极好的性能,但是当发生异质性并且网络尺寸扩展时,大多数现有的基于ML的方法都面临困难。在本文中,专注于在异构设备到设备(D2D)网络中的功率控制/波束成形(PC / BF)上,我们提出了一种名为异构干扰图神经网络(HIGNN)的新型无监督的学习框架来处理这些挑战。首先,我们将多样化的链接特征和干扰关系与异构图形。然后,建议在与相邻链路的有限信息交换之后授权每个链接以获得其各个传输方案。值得注意的是,HIGNN在小型网络上培训后,HIGNN可扩展到具有稳健性能的尺寸的无线网络。数值结果表明,与最先进的基准相比,HIGNN在提供了强大的性能时实现了更高的执行效率。
translated by 谷歌翻译
深度无形的神经网络(NNS)受到了极大的关注,因为它们的复杂性相对较低。通常,这些深度折​​叠的NN仅限于所有输入的固定深度。但是,收敛所需的最佳层随着不同的输入而变化。在本文中,我们首先开发了一个深层确定性策略梯度(DDPG)驱动的深度无折叠的框架,并针对不同输入进行自适应深度,在该框架中,DDPG学习了可训练的深度NN的可训练参数,而不是由随机梯度更新下降算法直接。具体而言,DDPG的状态,动作和状态过渡分别将优化变量,可训练的参数和架构分别设计为DDPG的状态,动作和状态过渡。然后,使用此框架来处理大量多输入多输出系统中的通道估计问题。具体而言,首先,我们通过离网基准制定了通道估计问题,并开发了稀疏的贝叶斯学习(SBL)基于基于的算法来解决它。其次,将基于SBL的算法展开为一组带有一组可训练参数的层结构。第三,采用了提出的DDPG驱动的深度解释框架来基于基于SBL的算法的展开结构来解决此通道估计问题。为了实现自适应深度,我们设计了停止分数以指示何时停止,这是通道重建误差的函数。此外,提出的框架被扩展到实现一般深度神经网络(DNNS)的适应性深度。仿真结果表明,所提出的算法的表现优于固定深度的常规优化算法和DNN,层数量大多。
translated by 谷歌翻译
多用户多输入多输出(MU-MIMO)系统可用于满足5G和超越网络的高吞吐量要求。基站在上行链路MU-MIMO系统中为许多用户提供服务,从而导致多用户干扰(MUI)。设计用于处理强大MUI的高性能探测器具有挑战性。本文分析了最先进消息传递(MP)检测器中使用高MUI的后验分布近似引起的性能降解。我们开发一个基于图神经网络的框架来微调MP检测器的腔分布,从而改善MP检测器中的后验分布近似。然后,我们提出了两个基于神经网络的新型检测器,它们依赖于期望传播(EP)和贝叶斯平行干扰取消(BPIC),分别称为GEPNET和GPICNET探测器。 GEPNET检测器可最大化检测性能,而GPICNET检测器平衡了性能和复杂性。我们提供了置换量比属性的证明,即使在具有动态变化的用户数量的系统中,也只能对检测器进行一次培训。仿真结果表明,所提出的GEPNET检测器性能在各种配置中接近最大似然性能,而GPICNET检测器将BPIC检测器的多路复用增益加倍。
translated by 谷歌翻译
作为图形数据的有效神经网络模型,图形神经网络(GNN)最近找到了针对各种无线优化问题的成功应用程序。鉴于GNN的推理阶段可以自然地以分散的方式实施,因此GNN是下一代无线通信中分散控制/管理的潜在推动力。但是,由于在与GNN的分散推断期间,邻居之间的信息交流可能会发生隐私泄漏。为了解决这个问题,在本文中,我们分析并增强了无线网络中GNN分散推断的隐私。具体来说,我们采用当地的差异隐私作为指标,设计了新颖的隐私信号以及隐私保证的培训算法,以实现保护隐私的推论。我们还定义了SNR私人关系权衡功能,以分析无线网络中使用GNN的分散推理的性能上限。为了进一步提高沟通和计算效率,我们采用了空中计算技术,理论上证明了其在隐私保护方面的优势。通过对合成图数据的大量模拟,我们验证了理论分析,验证提出的隐私无线信号传导和隐私保证培训算法的有效性,并就实际实施提供一些指导。
translated by 谷歌翻译
我们考虑多用户无线网络中的资源管理问题,可以将其视为优化网络范围的公用事业功能,这受到整个网络用户长期平均性能的限制。我们提出了一种以国家功能为算法来解决上述无线电资源管理(RRM)问题的算法,在此问题中,与瞬时网络状态相同,RRM策略将其作为输入的双重变量集,这些变量对应于约束,这些变量取决于多少,这些变量取决于多少,这些变量取决于多少。执行过程中违反约束。从理论上讲,我们表明,拟议的国有算法会导致可行且近乎最佳的RRM决策。此外,着重于使用图神经网络(GNN)参数化的无线功率控制问题,我们证明了所提出的RRM算法优于基线方法的优越性,跨基线方法。
translated by 谷歌翻译
可重新配置的智能表面(RIS)可以显着增强TERA-HERTZ大量多输入多输出(MIMO)通信系统的服务覆盖范围。但是,获得有限的飞行员和反馈信号开销的准确高维通道状态信息(CSI)具有挑战性,从而严重降低了常规空间分裂多次访问的性能。为了提高针对CSI缺陷的鲁棒性,本文提出了针对RIS辅助TERA-HERTZ多用户MIMO系统的基于深度学习的(DL)基于速率的多访问(RSMA)方案。具体而言,我们首先提出了基于DL的混合数据模型驱动的RSMA预编码方案,包括RIS的被动预编码以及模拟主动编码和基本站(BS)的RSMA数字活动预码。为了实现RIS的被动预码,我们提出了一个基于变压器的数据驱动的RIS反射网络(RRN)。至于BS的模拟主动编码,我们提出了一个基于匹配器的模拟预编码方案,因为BS和RIS采用了Los-Mimo天线阵列结构。至于BS的RSMA数字活动预码,我们提出了一个低复杂性近似加权的最小均方误差(AWMMSE)数字编码方案。此外,为了更好地编码性能以及较低的计算复杂性,模型驱动的深层展开的主动编码网络(DFAPN)也是通过将所提出的AWMMSE方案与DL相结合的。然后,为了在BS处获得准确的CSI,以实现提高光谱效率的RSMA预编码方案,我们提出了一个CSI采集网络(CAN),具有低飞行员和反馈信号开销,下行链接飞行员的传输,CSI在此处使用CSI的CSI反馈。 (UES)和BS处的CSI重建被建模为基于变压器的端到端神经网络。
translated by 谷歌翻译
可重新配置的智能表面(RIS)已成为近年来改善无线通信的有希望的技术。它通过控制具有较少硬件成本和较低功耗来控制可重新配置的被动元件来引导入射信号来创建有利的传播环境。在本文中,我们考虑了一个RIS辅助多用户多输入单输出下行链路通信系统。我们的目标是通过在接入点和RIS元件的被动波束形成向量中优化主动波束形成来最大化所有用户的加权和速率。与大多数现有的作品不同,我们考虑使用离散相移和不完美的信道状态信息(CSI)更实际的情况。具体而言,对于考虑离散相移和完美CSI的情况,我们首先开发一个深量化的神经网络(DQNN),同时设计主动和被动波束形成,而大多数报道的作品可选地设计。然后,我们基于DQNN提出改进的结构(I-DQNN),以简化参数决策过程,当每个RIS元素的控制位大于1位时。最后,我们将两种基于DQNN的算法扩展到同时考虑离散相移和不完全CSI的情况。我们的仿真结果表明,基于DQNN的两种算法比完美CSI案例中的传统算法更好,并且在不完美的CSI案例中也是更强大的。
translated by 谷歌翻译
最近,基于深层神经网络(DNN)的物理层通信技术引起了极大的兴趣。尽管模拟实验已经验证了它们增强通信系统和出色性能的潜力,但对理论分析的关注很少。具体而言,物理层中的大多数研究都倾向于专注于DNN模型在无线通信问题上的应用,但理论上不了解DNN在通信系统中的工作方式。在本文中,我们旨在定量分析为什么DNN可以在物理层中与传统技术相比,并在计算复杂性方面提高其成本。为了实现这一目标,我们首先分析基于DNN的发射器的编码性能,并将其与传统发射器进行比较。然后,我们理论上分析了基于DNN的估计器的性能,并将其与传统估计器进行比较。第三,我们调查并验证在信息理论概念下基于DNN的通信系统中如何播放信息。我们的分析开发了一种简洁的方式,可以在物理层通信中打开DNN的“黑匣子”,可用于支持基于DNN的智能通信技术的设计,并有助于提供可解释的性能评估。
translated by 谷歌翻译
这项工作将重新审视关节波束形成(BF)和天线选择(AS)问题,以及其在不完美的通道状态信息(CSI)下的稳健光束成型(RBF)版本。在射频链的数量(RF)链的数量小于发射器上的天线元件的情况下,出现了此类问题,这已成为大型阵列时代的关键考虑。关节(r)bf \&作为问题是一个混合整数和非线性程序,因此发现{\ it最佳解决方案}通常是昂贵的,即使不是完全不可能。绝大多数先前的作品都使用基于连续优化的近似来解决这些问题 - 但是这些近似不能确保解决方案的最佳性甚至可行性。这项工作的主要贡献是三倍。首先,提出了一个有效的{\ it分支和绑定}(b \&b)解决感兴趣问题的框架。利用现有的BF和RBF求解器,表明B \&B框架保证了所考虑的问题的全球最优性。其次,为了加快潜在昂贵的B \&B算法,提出了一种基于机器学习(ML)的方案,以帮助跳过B \&B搜索树的中间状态。学习模型具有{\ it图形神经网络}(GNN)的设计,该设计对无线通信中通常遇到的挑战有抵抗力,即,培训和测试中问题大小的变化(例如,用户数量)的变化(例如,用户数量)阶段。第三,提出了全面的性能特征,表明基于GNN的方法在合理的条件下保留了B \&B的全球最佳性,其复杂性可降低。数值模拟还表明,基于ML的加速度通常可以相对于B \&b实现速度的速度。
translated by 谷歌翻译
机器学习在解决无线干扰管理问题方面取得了成功。已经培训了不同种类的深神经网络(DNN),以完成功率控制,波束成形和准入控制等关键任务。基于DNNS的干扰管理模型有两个流行的培训范式:监督学习(即,由优化算法产生的拟合标签)和无监督的学习(即,直接优化一些系统性能测量)。虽然这两种范式都在实践中广泛应用,但由于对这些方法缺乏任何理论理解,但目前尚不清楚如何系统地理解和比较他们的性能。在这项工作中,我们开展理论研究,为这两个训练范例提供了一些深入的了解。首先,我们展示了一些令人惊讶的结果,即对于一些特殊的功率控制问题,无监督的学习可以表现比监督对手更糟糕,因为它更有可能陷入一些低质量的本地解决方案。然后,我们提供了一系列理论结果,以进一步了解两种方法的性质。一般来说,我们表明,当有高质量的标签可用时,监督学习不太可能陷入解决方案,而不是无监督的对应物。此外,我们开发了一种半监督的学习方法,可以妥善整合这两个训练范例,可以有效地利用有限数量的标签来找到高质量的解决方案。为了我们的知识,这些是第一种在基于学习的无线通信系统设计中了解不同培训方法的第一组理论结果。
translated by 谷歌翻译
Deep learning-based physical-layer secret key generation (PKG) has been used to overcome the imperfect uplink/downlink channel reciprocity in frequency division duplexing (FDD) orthogonal frequency division multiplexing (OFDM) systems. However, existing efforts have focused on key generation for users in a specific environment where the training samples and test samples obey the same distribution, which is unrealistic for real world applications. This paper formulates the PKG problem in multiple environments as a learning-based problem by learning the knowledge such as data and models from known environments to generate keys quickly and efficiently in multiple new environments. Specifically, we propose deep transfer learning (DTL) and meta-learning-based channel feature mapping algorithms for key generation. The two algorithms use different training methods to pre-train the model in the known environments, and then quickly adapt and deploy the model to new environments. Simulation results show that compared with the methods without adaptation, the DTL and meta-learning algorithms both can improve the performance of generated keys. In addition, the complexity analysis shows that the meta-learning algorithm can achieve better performance than the DTL algorithm with less time, lower CPU and GPU resources.
translated by 谷歌翻译
我们提出了一种基于图形神经网络(GNN)的端到端框架,以平衡通用网格中的功率流。优化被帧为监督的顶点回归任务,其中GNN培训以预测每个网格分支的电流和功率注入,从而产生功率流量平衡。通过将电网表示为与顶点的分支的线图,我们可以培训一个更准确和强大的GNN来改变底层拓扑。此外,通过使用专门的GNN层,我们能够构建一个非常深的架构,该架构占图表上的大街区,同时仅实现本地化操作。我们执行三个不同的实验来评估:i)使用深入GNN模型时使用本地化而不是全球运营的好处和趋势; ii)图形拓扑中对扰动的弹性;和iii)能力同时在多个网格拓扑上同时培训模型以及新的看不见网格的概括性的改进。拟议的框架是有效的,而且与基于深度学习的其他求解器相比,不仅对网格组件上的物理量而且对拓扑的物理量具有鲁棒性。
translated by 谷歌翻译
图形神经网络(GNN)是图形数据的有效的神经网络模型,广泛用于不同的领域,包括无线通信。与其他神经网络模型不同,GNN可以以分散的方式实现,其中邻居之间的信息交换,使其成为无线通信系统中分散控制的潜在强大的工具。然而,主要的瓶颈是无线频道损伤,其恶化了GNN的预测稳健性。为了克服这个障碍,我们在本文中分析和增强了不同无线通信系统中分散的GNN的鲁棒性。具体地,使用GNN二进制分类器作为示例,我们首先开发一种方法来验证预测是否稳健。然后,我们在未编码和编码的无线通信系统中分析分散的GNN二进制分类器的性能。为了解决不完美的无线传输并增强预测稳健性,我们进一步提出了用于上述两个通信系统的新型重传机制。通过仿真对合成图数据,我们验证了我们的分析,验证了提出的重传机制的有效性,并为实际实施提供了一些见解。
translated by 谷歌翻译
由于其快速和低功率配置,可重新配置的智能表面(RISS)最近被视为未来无线网络的节能解决方案,这在实现大规模连通性和低延迟通信方面具有增加的潜力。基于RIS的系统中的准确且低空的通道估计是通常的RIS单元元素及其独特的硬件约束,这是最关键的挑战之一。在本文中,我们专注于RIS授权的多用户多用户多输入单输出(MISO)上行链路通信系统的上行链路,并根据并行因子分解提出了一个通道估计框架,以展开所得的级联通道模型。我们为基站和RIS之间的渠道以及RIS与用户之间的渠道提供了两种迭代估计算法。一个基于交替的最小二乘(ALS),而另一个使用向量近似消息传递到迭代的迭代中,从估计的向量重建了两个未知的通道。为了从理论上评估基于ALS的算法的性能,我们得出了其估计值CRAM \'ER-RAO BOND(CRB)。我们还通过估计的通道和基本站的不同预码方案讨论了可实现的总和率计算。我们的广泛仿真结果表明,我们的算法表现优于基准方案,并且ALS技术可实现CRB。还证明,使用估计通道的总和率总是在各种设置下达到完美通道的总和,从而验证了提出的估计算法的有效性和鲁棒性。
translated by 谷歌翻译