近年来,许多定量金融领域的从业者试图使用深度强化学习(DRL)来建立更好的定量交易(QT)策略。然而,许多现有研究未能应对几个严重的挑战,例如非平稳财务环境以及在实际金融市场应用DRL时的偏见和差异权衡。在这项工作中,我们提出了Safe-Finrl,这是一种基于DRL的新型高FREQ股票交易策略,该策略通过近部财务环境以及低偏差和差异估算而增强。我们的主要贡献是双重的:首先,我们将漫长的财务时间序列分为近乎固定的短期环境;其次,我们通过将一般反探测器纳入软批评者中,在近部财务环境中实施Trace-SAC。对加密货币市场的广泛实验表明,避风势范围提供了稳定的价值估计,并稳定的政策改善,并在近部财务环境中显着降低了偏见和差异。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
采用合理的策略是具有挑战性的,但对于智能代理商的智能代理人至关重要,其资源有限,在危险,非结构化和动态环境中工作,以改善系统实用性,降低整体成本并增加任务成功概率。深度强化学习(DRL)帮助组织代理的行为和基于其状态的行为,并代表复杂的策略(行动的组成)。本文提出了一种基于贝叶斯链条的新型分层策略分解方法,将复杂的政策分为几个简单的子手段,并将其作为贝叶斯战略网络(BSN)组织。我们将这种方法整合到最先进的DRL方法中,软演奏者 - 批评者(SAC),并通过组织几个子主管作为联合政策来构建相应的贝叶斯软演奏者(BSAC)模型。我们将建议的BSAC方法与标准连续控制基准(Hopper-V2,Walker2D-V2和Humanoid-V2)在SAC和其他最先进的方法(例如TD3,DDPG和PPO)中进行比较 - Mujoco与Openai健身房环境。结果表明,BSAC方法的有希望的潜力可显着提高训练效率。可以从https://github.com/herolab-uga/bsac访问BSAC的开源代码。
translated by 谷歌翻译
这篇科学论文提出了一种新型的投资组合优化模型,使用改进的深钢筋学习算法。优化模型的目标函数是投资组合累积回报的期望和价值的加权总和。所提出的算法基于参与者 - 批判性架构,其中关键网络的主要任务是使用分位数回归学习投资组合累积返回的分布,而Actor网络通过最大化上述目标函数来输出最佳投资组合权重。同时,我们利用线性转换功能来实现资产短销售。最后,使用了一种称为APE-X的多进程方法来加速深度强化学习训练的速度。为了验证我们提出的方法,我们对两个代表性的投资组合进行了重新测试,并观察到这项工作中提出的模型优于基准策略。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
软演员 - 评论家(SAC)是最先进的偏离策略强化学习(RL)算法之一,其在基于最大熵的RL框架内。 SAC被证明在具有良好稳定性和稳健性的持续控制任务的列表中表现得非常好。 SAC了解一个随机高斯政策,可以最大限度地提高预期奖励和政策熵之间的权衡。要更新策略,SAC可最大限度地减少当前策略密度与软值函数密度之间的kl分歧。然后用于获得这种分歧的近似梯度的回报。在本文中,我们提出了跨熵策略优化(SAC-CEPO)的软演员 - 评论家,它使用跨熵方法(CEM)来优化SAC的政策网络。初始思想是使用CEM来迭代地对软价函数密度的最接近的分布进行采样,并使用结果分布作为更新策略网络的目标。为了降低计算复杂性,我们还介绍了一个解耦的策略结构,该策略结构将高斯策略解耦为一个策略,了解了学习均值的均值和另一个策略,以便只有CEM训练平均政策。我们表明,这种解耦的政策结构确实会聚到最佳,我们还通过实验证明SAC-CEPO实现对原始囊的竞争性能。
translated by 谷歌翻译
本文解决了当参与需求响应(DR)时优化电动汽车(EV)的充电/排放时间表的问题。由于电动汽车的剩余能量,到达和出发时间以及未来的电价中存在不确定性,因此很难做出充电决定以最大程度地减少充电成本,同时保证电动汽车的电池最先进(SOC)在内某些范围。为了解决这一难题,本文将EV充电调度问题制定为Markov决策过程(CMDP)。通过协同结合增强的Lagrangian方法和软演员评论家算法,本文提出了一种新型安全的非政策钢筋学习方法(RL)方法来解决CMDP。通过Lagrangian值函数以策略梯度方式更新Actor网络。采用双重危机网络来同步估计动作值函数,以避免高估偏差。所提出的算法不需要强烈的凸度保证,可以保证被检查的问题,并且是有效的样本。现实世界中电价的全面数值实验表明,我们提出的算法可以实现高解决方案最佳性和约束依从性。
translated by 谷歌翻译
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an offpolicy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
translated by 谷歌翻译
本文介绍了用于交易单一资产的双重Q网络算法,即E-MINI S&P 500连续期货合约。我们使用经过验证的设置作为我们环境的基础,并具有多个扩展。我们的贸易代理商的功能不断扩展,包括其他资产,例如商品,从而产生了四种型号。我们还应对环境条件,包括成本和危机。我们的贸易代理商首先接受了特定时间段的培训,并根据新数据进行了测试,并将其与长期策略(市场)进行了比较。我们分析了各种模型与样本中/样本外性能之间有关环境的差异。实验结果表明,贸易代理人遵循适当的行为。它可以将其政策调整为不同的情况,例如在存在交易成本时更广泛地使用中性位置。此外,净资产价值超过了基准的净值,代理商在测试集中的市场优于市场。我们使用DDQN算法对代理商在金融领域中的行为提供初步见解。这项研究的结果可用于进一步发展。
translated by 谷歌翻译
与政策策略梯度技术相比,使用先前收集的数据的无模型的无模型深钢筋学习(RL)方法可以提高采样效率。但是,当利益政策的分布与收集数据的政策之间的差异时,非政策学习变得具有挑战性。尽管提出了良好的重要性抽样和范围的政策梯度技术来补偿这种差异,但它们通常需要一系列长轨迹,以增加计算复杂性并引起其他问题,例如消失或爆炸梯度。此外,由于需要行动概率,它们对连续动作领域的概括严格受到限制,这不适合确定性政策。为了克服这些局限性,我们引入了一种替代的非上政策校正算法,用于连续作用空间,参与者 - 批判性非政策校正(AC-OFF-POC),以减轻先前收集的数据引入的潜在缺陷。通过由代理商对随机采样批次过渡的状态的最新动作决策计算出的新颖差异度量,该方法不需要任何策略的实际或估计的行动概率,并提供足够的一步重要性抽样。理论结果表明,引入的方法可以使用固定的独特点获得收缩映射,从而可以进行“安全”的非政策学习。我们的经验结果表明,AC-Off-POC始终通过有效地安排学习率和Q学习和政策优化的学习率,以比竞争方法更少的步骤改善最新的回报。
translated by 谷歌翻译
政策梯度定理(Sutton等,2000)规定了目标政策下的累积折扣国家分配以近似梯度。实际上,基于该定理的大多数算法都打破了这一假设,引入了分布转移,该分配转移可能导致逆转溶液的收敛性。在本文中,我们提出了一种新的方法,可以从开始状态重建政策梯度,而无需采取特定的采样策略。可以根据梯度评论家来简化此形式的策略梯度计算,由于梯度的新钟声方程式,可以递归估算。通过使用来自差异数据流的梯度评论家的时间差异更新,我们开发了第一个以无模型方式避开分布变化问题的估计器。我们证明,在某些可实现的条件下,无论采样策略如何,我们的估计器都是公正的。我们从经验上表明,我们的技术在存在非政策样品的情况下实现了卓越的偏见变化权衡和性能。
translated by 谷歌翻译
在训练加强学习(RL)代理的过程中,随着代理商的行为随着时间的变化而变化,培训数据的分布是非平稳的。因此,有风险,代理被过度专门针对特定的分布,其性能在更大的情况下受到了影响。合奏RL可以通过学习强大的策略来减轻此问题。但是,由于新引入的价值和策略功能,它遭受了大量的计算资源消耗。在本文中,为了避免臭名昭著的资源消费问题,我们设计了一个新颖而简单的合奏深度RL框架,将多个模型集成到单个模型中。具体而言,我们提出了\下划线{m} inimalist \ usewissline {e} nsemble \ useverlline {p} olicy \ usewissline {g} radient框架(mepg),通过利用修改后的辍学者,引入了简约的bellman更新。 MEPG通过保持Bellman方程式两侧的辍学一致性来持有合奏属性。此外,辍学操作员还增加了MEPG的概括能力。此外,我们从理论上表明,MEPG中的政策评估阶段维持了两个同步的深高斯流程。为了验证MEPG框架的概括能力,我们在健身房模拟器上执行实验,该实验表明,MEPG框架的表现优于或达到与当前最新的无效合奏方法和不增加模型的方法相似的性能水平其他计算资源成本。
translated by 谷歌翻译
一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它的表现非常低于参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还认为稳定性和最新发现的问题是Per的经验表现不佳。引入的算法提出了对演员和评论家网络的有效和高效培训的改进的新分支。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着优于竞争方法,并获得了与标准的非政策参与者 - 批评算法相比,获得最先进的结果。
translated by 谷歌翻译
尽管强化学习(RL)对于不确定性下的顺序决策问题有效,但在风险或安全性是具有约束力约束的现实系统中,它仍然无法蓬勃发展。在本文中,我们将安全限制作为非零和游戏制定了RL问题。在用最大熵RL部署的同时,此配方会导致一个安全的对手引导的软角色批评框架,称为SAAC。在SAAC中,对手旨在打破安全约束,而RL代理的目标是在对手的策略下最大程度地提高约束价值功能。对代理的价值函数的安全限制仅表现为代理商和对手政策之间的排斥项。与以前的方法不同,SAAC可以解决不同的安全标准,例如安全探索,均值差异风险敏感性和类似CVAR的相干风险敏感性。我们说明了这些约束的对手的设计。然后,在每种变化中,我们都表明,除了学习解决任务外,代理人与对手的不安全行为不同。最后,对于具有挑战性的持续控制任务,我们证明SAAC可以实现更快的融合,提高效率和更少的失败以满足安全限制,而不是风险避免风险的分布RL和风险中性的软性参与者批判性算法。
translated by 谷歌翻译
无模型的深度增强学习(RL)已成功应用于挑战连续控制域。然而,较差的样品效率可防止这些方法广泛用于现实世界领域。我们通过提出一种新的无模型算法,现实演员 - 评论家(RAC)来解决这个问题,旨在通过学习关于Q函数的各种信任的政策家庭来解决价值低估和高估之间的权衡。我们构建不确定性惩罚Q-Learning(UPQ),该Q-Learning(UPQ)使用多个批评者的合并来控制Q函数的估计偏差,使Q函数平稳地从低于更高的置信范围偏移。随着这些批评者的指导,RAC采用通用价值函数近似器(UVFA),同时使用相同的神经网络学习许多乐观和悲观的政策。乐观的政策会产生有效的探索行为,而悲观政策会降低价值高估的风险,以确保稳定的策略更新和Q函数。该方法可以包含任何违规的演员 - 评论家RL算法。我们的方法实现了10倍的样本效率和25 \%的性能改进与SAC在最具挑战性的人形环境中,获得了11107美元的集中奖励1107美元,价格为10 ^ 6美元。所有源代码都可以在https://github.com/ihuhuhu/rac获得。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
More and more stock trading strategies are constructed using deep reinforcement learning (DRL) algorithms, but DRL methods originally widely used in the gaming community are not directly adaptable to financial data with low signal-to-noise ratios and unevenness, and thus suffer from performance shortcomings. In this paper, to capture the hidden information, we propose a DRL based stock trading system using cascaded LSTM, which first uses LSTM to extract the time-series features from stock daily data, and then the features extracted are fed to the agent for training, while the strategy functions in reinforcement learning also use another LSTM for training. Experiments in DJI in the US market and SSE50 in the Chinese stock market show that our model outperforms previous baseline models in terms of cumulative returns and Sharp ratio, and this advantage is more significant in the Chinese stock market, a merging market. It indicates that our proposed method is a promising way to build a automated stock trading system.
translated by 谷歌翻译
In value-based reinforcement learning methods such as deep Q-learning, function approximation errors are known to lead to overestimated value estimates and suboptimal policies. We show that this problem persists in an actor-critic setting and propose novel mechanisms to minimize its effects on both the actor and the critic. Our algorithm builds on Double Q-learning, by taking the minimum value between a pair of critics to limit overestimation. We draw the connection between target networks and overestimation bias, and suggest delaying policy updates to reduce per-update error and further improve performance. We evaluate our method on the suite of OpenAI gym tasks, outperforming the state of the art in every environment tested.
translated by 谷歌翻译
近年来,深入的强化学习(DRL)在模拟机器人控制任务中都取得了巨大进步。然而,将DRL应用于新型机器人控制任务仍然具有挑战性,尤其是当研究人员必须设计动作和观察空间以及奖励功能时。在本文中,我们研究了部分可观察性,作为将DRL应用于机器人控制任务的潜在失败来源,当研究人员不相信观察空间是否完全代表基本状态时,可能会发生这种情况。我们比较了各种部分可观察性条件下的三种常见DRL算法TD3,SAC和PPO的性能。我们发现TD3和SAC很容易被卡在本地Optima和表现不佳的PPO中。我们提出了香草TD3和SAC的多步版本,以改善基于一步引导的部分可观察性的鲁棒性。
translated by 谷歌翻译
深度加强学习(DRL)的框架为连续决策提供了强大而广泛适用的数学形式化。本文提出了一种新的DRL框架,称为\ emph {$ f $-diveliventcence加强学习(frl)}。在FRL中,通过最大限度地减少学习政策和采样策略之间的$ F $同时执行策略评估和政策改进阶段,这与旨在最大化预期累计奖励的传统DRL算法不同。理论上,我们证明最小化此类$ F $ - 可以使学习政策会聚到最佳政策。此外,我们将FRL框架中的培训代理程序转换为通过Fenchel Concugate的特定$ F $函数转换为鞍点优化问题,这构成了政策评估和政策改进的新方法。通过数学证据和经验评估,我们证明FRL框架有两个优点:(1)政策评估和政策改进过程同时进行,(2)高估价值函数的问题自然而缓解。为了评估FRL框架的有效性,我们对Atari 2600的视频游戏进行实验,并显示在FRL框架中培训的代理匹配或超越基线DRL算法。
translated by 谷歌翻译