随着基于粉末的添加剂制造的快速开发,DepeDdering是去除覆盖3D打印零件的未使用粉末的过程,已成为进一步提高其生产力的主要瓶颈。传统的手动缩减非常耗时且昂贵,并且一些先前的自动化系统要么需要预处理或缺乏对不同3D打印零件的适应性。为了解决这些问题,我们引入了一个机器人系统,该机器人系统会自动从3D打印零件的表面上去除未加入的粉末。关键组件是一个视觉感知系统,该系统由一个姿势跟踪模块组成,该模块可实时跟踪6D姿势的粉末封闭零件,以及一个估计缩减完成百分比的进度估计模块。跟踪模块可以在高达60 fps的笔记本电脑CPU上有效运行。实验表明,我们的退化系统可以从各种3D打印零件的表面上除去未持续的粉末,而不会造成任何损坏。据我们所知,这是第一个基于视觉的机器人脱皮系统之一,可适应各种形状的部分而无需预多供款。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
点对特征(PPF)广泛用于6D姿势估计。在本文中,我们提出了一种基于PPF框架的有效的6D姿势估计方法。我们介绍了一个目标良好的下采样策略,该策略更多地集中在边缘区域,以有效地提取复杂的几何形状。提出了一种姿势假设验证方法来通过计算边缘匹配度来解决对称歧义。我们对两个具有挑战性的数据集和一个现实世界中收集的数据集进行评估,这证明了我们方法对姿势估计几何复杂,遮挡,对称对象的优越性。我们通过将其应用于模拟穿刺来进一步验证我们的方法。
translated by 谷歌翻译
休眠季节葡萄树修剪需要熟练的季节性工人,这在冬季变得越来越缺乏。随着在短期季节性招聘文化和低工资的短期季节性招聘文化和低工资的时间内,随着工人更少的葡萄藤,葡萄藤往往被修剪不一致地导致葡萄化物不平衡。除此之外,目前现有的机械方法无法选择性地修剪葡萄园和手动后续操作,通常需要进一步提高生产成本。在本文中,我们展示了崎岖,全自治机器人的设计和田间评估,用于休眠季节葡萄园的端到最终修剪。该设计的设计包括新颖的相机系统,运动冗余机械手,地面机器人和在感知系统中的新颖算法。所提出的研究原型机器人系统能够在213秒/葡萄藤中完全从两侧刺激一排藤蔓,总修枝精度为87%。与机械预灌浆试验相比,商业葡萄园中自治系统的初始现场测试显示出休眠季节修剪的显着变化。在手稿中描述了设计方法,系统组件,经验教训,未来增强以及简要的经济分析。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
机器人超声(US)成像已被视为克服美国自由手检查的局限性,即操作员互操作机构的局限性。 \修订{然而,机器人美国系统在扫描过程中无法对主体运动做出反应,这限制了他们的临床接受。}关于人类超声检查员,他们经常通过重新定位探针甚至重新启动摄取,尤其是因为扫描而对患者的运动做出反应。具有较长结构等肢体动脉的解剖学。为了实现这一特征,我们提出了一个基于视觉的系统来监视受试者的运动并自动更新扫描轨迹,从而无缝获得目标解剖结构的完整3D图像。使用RGB图像中的分段对象掩码开发运动监视模块。一旦受试者移动,机器人将通过使用迭代最接近点算法在移动前后获得的对象的表面点云来停止并重新计算合适的轨迹。之后,为了确保重新定位US探针后的最佳接触条件,使用基于置信的微调过程来避免探针和接触表面之间的潜在间隙。最后,整个系统在具有不均匀表面的人类臂幻象上进行了验证,而对象分割网络也在志愿者上得到验证。结果表明,提出的系统可以对对象运动做出反应,并可靠地提供准确的3D图像。
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
在本文中,我们提出了一种新的动作计划方法,将长线性弹性对象自动包装到具有双层机器人系统的常用盒中。为此,我们开发了一个混合几何模型,以处理结合基于在线视觉的方法和离线参考模板的大规模遮挡。然后,引入一个参考点发生器以自动计划预先设计的动作原始基底的参考姿势。最后,一个行动计划者集成了这些组件,以实现高级行为的执行以及包装操纵任务的完成。为了验证提出的方法,我们进行了一项详细的实验研究,其中有多种类型和长度的物体和包装盒。
translated by 谷歌翻译
实时机器人掌握,支持随后的精确反对操作任务,是高级高级自治系统的优先目标。然而,尚未找到这样一种可以用时间效率进行充分准确的掌握的算法。本文提出了一种新的方法,其具有2阶段方法,它使用深神经网络结合快速的2D对象识别,以及基于点对特征框架的随后的精确和快速的6D姿态估计来形成实时3D对象识别和抓握解决方案能够多对象类场景。所提出的解决方案有可能在实时应用上稳健地进行,需要效率和准确性。为了验证我们的方法,我们进行了广泛且彻底的实验,涉及我们自己的数据集的费力准备。实验结果表明,该方法在5CM5DEG度量标准中的精度97.37%,平均距离度量分数99.37%。实验结果显示了通过使用该方法的总体62%的相对改善(5cm5deg度量)和52.48%(平均距离度量)。此外,姿势估计执行也显示出运行时间的平均改善47.6%。最后,为了说明系统在实时操作中的整体效率,进行了一个拾取和放置的机器人实验,并显示了90%的准确度的令人信服的成功率。此实验视频可在https://sites.google.com/view/dl-ppf6dpose/上获得。
translated by 谷歌翻译
Traditional approaches to extrinsic calibration use fiducial markers and learning-based approaches rely heavily on simulation data. In this work, we present a learning-based markerless extrinsic calibration system that uses a depth camera and does not rely on simulation data. We learn models for end-effector (EE) segmentation, single-frame rotation prediction and keypoint detection, from automatically generated real-world data. We use a transformation trick to get EE pose estimates from rotation predictions and a matching algorithm to get EE pose estimates from keypoint predictions. We further utilize the iterative closest point algorithm, multiple-frames, filtering and outlier detection to increase calibration robustness. Our evaluations with training data from multiple camera poses and test data from previously unseen poses give sub-centimeter and sub-deciradian average calibration and pose estimation errors. We also show that a carefully selected single training pose gives comparable results.
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
成功掌握对象的能力在机器人中是至关重要的,因为它可以实现多个交互式下游应用程序。为此,大多数方法要么计算兴趣对象的完整6D姿势,要么学习预测一组掌握点。虽然前一种方法对多个对象实例或类没有很好地扩展,但后者需要大的注释数据集,并且受到新几何形状的普遍性能力差的阻碍。为了克服这些缺点,我们建议教授一个机器人如何用简单而简短的人类示范掌握一个物体。因此,我们的方法既不需要许多注释图像,也不限于特定的几何形状。我们首先介绍了一个小型RGB-D图像,显示人对象交互。然后利用该序列来构建表示所描绘的交互的相关手和对象网格。随后,我们完成重建对象形状的缺失部分,并估计了场景中的重建和可见对象之间的相对变换。最后,我们从物体和人手之间的相对姿势转移a-prioriz知识,随着当前对象在场景中的估计到机器人的必要抓握指令。与丰田的人类支持机器人(HSR)在真实和合成环境中的详尽评估证明了我们所提出的方法的适用性及其优势与以前的方法相比。
translated by 谷歌翻译
Estimating 6D poses of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by matching the rendered image against the observed image. The network is trained to predict a relative pose transformation using a disentangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over stateof-the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.
translated by 谷歌翻译
在这项工作中,我们解决了共同跟踪手对象姿势并从野外深度点云序列重建形状的具有挑战性,HandTrackNet,以估计框架间的手动运动。我们的HandTrackNet提出了一个新型的手姿势构成典型化模块,以简化跟踪任务,从而产生准确且稳健的手工关节跟踪。然后,我们的管道通过将预测的手关节转换为基于模板的参数手模型mano来重建全手。对于对象跟踪,我们设计了一个简单而有效的模块,该模块从第一帧估算对象SDF并执行基于优化的跟踪。最后,采用联合优化步骤执行联合手和物体推理,从而减轻了闭塞引起的歧义并进一步完善了手姿势。在训练过程中,整个管道仅看到纯粹的合成数据,这些数据与足够的变化并通过深度模拟合成,以易于概括。整个管道与概括差距有关,因此可以直接传输到真实的野外数据。我们在两个真实的手对象交互数据集上评估我们的方法,例如HO3D和DEXYCB,没有任何填充。我们的实验表明,所提出的方法显着优于先前基于深度的手和对象姿势估计和跟踪方法,以9 fps的帧速率运行。
translated by 谷歌翻译
Vascular shunt insertion is a fundamental surgical procedure used to temporarily restore blood flow to tissues. It is often performed in the field after major trauma. We formulate a problem of automated vascular shunt insertion and propose a pipeline to perform Automated Vascular Shunt Insertion (AVSI) using a da Vinci Research Kit. The pipeline uses a learned visual model to estimate the locus of the vessel rim, plans a grasp on the rim, and moves to grasp at that point. The first robot gripper then pulls the rim to stretch open the vessel with a dilation motion. The second robot gripper then proceeds to insert a shunt into the vessel phantom (a model of the blood vessel) with a chamfer tilt followed by a screw motion. Results suggest that AVSI achieves a high success rate even with tight tolerances and varying vessel orientations up to 30{\deg}. Supplementary material, dataset, videos, and visualizations can be found at https://sites.google.com/berkeley.edu/autolab-avsi.
translated by 谷歌翻译
Ultrasound is progressing toward becoming an affordable and versatile solution to medical imaging. With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging as it requires trained operators in close proximity to patients for long period of time. In this work, we investigate the important yet seldom-studied problem of scan target localization, under the setting of lung ultrasound imaging. We propose a purely vision-based, data driven method that incorporates learning-based computer vision techniques. We combine a human pose estimation model with a specially designed regression model to predict the lung ultrasound scan targets, and deploy multiview stereo vision to enhance the consistency of 3D target localization. While related works mostly focus on phantom experiments, we collect data from 30 human subjects for testing. Our method attains an accuracy level of 15.52 (9.47) mm for probe positioning and 4.32 (3.69){\deg} for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets. Moreover, our approach can serve as a general solution to other types of ultrasound modalities. The code for implementation has been released.
translated by 谷歌翻译
精确农业的当代机器人主要集中于自动收获或遥感以监测作物健康。关于在田间收集物理样品并将其保留以进行进一步分析方面的工作相对较少。通常,果园种植者手动收集样品叶子,并利用它们进行茎潜在的测量,以分析树木健康并确定灌溉常规。尽管该技术受益于果园的管理,但收集,评估和解释测量的过程需要大量的人工劳动,并且通常会导致不经常采样。自动抽样可以为种植者提供高度准确和及时的信息。这种自动化的原位叶子分析的第一步是识别并切割从树上的叶子。此检索过程需要新的驱动和感知方法。我们提出了一种使用深度摄像头的点云数据来检测和定位候选叶子的技术。该技术在鳄梨树的室内和室外点云上进行了测试。然后,我们在六道机器人臂上使用定制的叶片剪切端效应器,通过从鳄梨树上切下叶子来测试拟议的检测和定位技术。使用真正的鳄梨树进行实验测试表明,我们提出的方法可以使我们的移动操纵器和自定义最终效果系统能够成功地检测,定位和切割的叶子。
translated by 谷歌翻译
The accurate detection and grasping of transparent objects are challenging but of significance to robots. Here, a visual-tactile fusion framework for transparent object grasping under complex backgrounds and variant light conditions is proposed, including the grasping position detection, tactile calibration, and visual-tactile fusion based classification. First, a multi-scene synthetic grasping dataset generation method with a Gaussian distribution based data annotation is proposed. Besides, a novel grasping network named TGCNN is proposed for grasping position detection, showing good results in both synthetic and real scenes. In tactile calibration, inspired by human grasping, a fully convolutional network based tactile feature extraction method and a central location based adaptive grasping strategy are designed, improving the success rate by 36.7% compared to direct grasping. Furthermore, a visual-tactile fusion method is proposed for transparent objects classification, which improves the classification accuracy by 34%. The proposed framework synergizes the advantages of vision and touch, and greatly improves the grasping efficiency of transparent objects.
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译