We introduce an optimal transport-based model for learning a metric tensor from cross-sectional samples of evolving probability measures on a common Riemannian manifold. We neurally parametrize the metric as a spatially-varying matrix field and efficiently optimize our model's objective using a simple alternating scheme. Using this learned metric, we can nonlinearly interpolate between probability measures and compute geodesics on the manifold. We show that metrics learned using our method improve the quality of trajectory inference on scRNA and bird migration data at the cost of little additional cross-sectional data.
translated by 谷歌翻译
考虑随时间演变的粒子群,通过快照监测,使用在连续时间戳的群体内采样的粒子。仅提供对这些快照的访问,我们可以重建这些粒子的单个轨迹吗?这个问题在我们时代的许多重要科学挑战中,特别是单细胞基因组学。在本文中,我们建议将人口动态模拟为欧洲因果乔丹 - 古德莱尔 - 奥托(JKO)的措施的实现:JKO计划陷入困境,即在时间T + 1的人口采取的新配置是交易的新配置在它减少能量的情况下,群体的更好配置,同时保持关闭(在Wasserstein距离)到在T.中观察到的先前配置。我们在这项工作中的目标是学习这样的能源给定数据。为此,我们提出了JKONET,一种计算的神经结构(以端到端可分子的方式),JKO流量给出了参数化能量和初始配置点。与更直接的前进方法相比,我们展示了JKONET配件程序的良好性能和稳健性。
translated by 谷歌翻译
在这里,我们提出了一种称为歧管插值最佳传输流量(MIOFLOW)的方法,该方法从零星时间点上采集的静态快照样品中学习随机,连续的种群动力学。 Mioflow结合了动态模型,流动学习和通过训练神经普通微分方程(神经ode)的最佳运输,以在静态种群快照之间插值,以通过具有歧管地面距离的最佳运输来惩罚。此外,我们通过在自动编码器的潜在空间中运行我们称为Geodesic AutoCododer(GAE)来确保流量遵循几何形状。在GAE中,正规化了点之间的潜在空间距离,以匹配我们定义的数据歧管上的新型多尺度测量距离。我们表明,这种方法优于正常流,Schr \“ Odinger Bridges和其他旨在根据人群之间插值的噪声流向数据的生成模型。从理论上讲,我们将这些轨迹与动态最佳运输联系起来。我们评估了我们的评估使用分叉和合并的模拟数据,以及来自胚胎身体分化和急性髓样白血病的SCRNA-SEQ数据。
translated by 谷歌翻译
人口动态是对生物种群大小的时间和空间变化的研究,是人口生态学的主要部分。分析人口动态的主要困难之一是,由于实验成本或测量限制,我们只能从固定点观察值中获得粗略的时间间隔的观察数据。最近,已经提出,通过使用连续归一化流(CNF)和动态最佳运输来对种群动力学进行建模,以从观察到的人群中推断样品轨迹。尽管CNF中的样本行为是确定性的,但生物系统中的实际样本以本质上随机但方向性的方式移动。此外,当样本从点A中的点移动到动力学系统中B点B时,其轨迹通常遵循最小动作的原理,在该原理中,相应的动作具有最小的可能值。为了满足样品轨迹的这些要求,我们制定了Lagrangian Schr \“ Odinger Bridge(LSB)问题,并提议将其近似于使用神经SDE和正则化解决。我们还开发了一个模型体系结构,可以更快地计算。实验结果表明,该结果表明,该模型表明,提出的方法即使对于高维数据也可以有效地近似人口级动力学,并且使用拉格朗日引入的先验知识使我们能够估算具有随机行为的单个样本的轨迹。
translated by 谷歌翻译
Wasserstein-Fisher-Rao(WFR)距离是一个指标家族,用于评估两种ra措施的差异,这同时考虑了运输和重量的变化。球形WFR距离是WFR距离的投影版本,以实现概率措施,因此配备了WFR的ra尺度空间可以在概率测量的空间中,用球形WFR视为公式锥。与Wasserstein距离相比,在球形WFR下对大地测量学的理解尚不清楚,并且仍然是持续的研究重点。在本文中,我们开发了一个深度学习框架,以计算球形WFR指标下的大地测量学,并且可以采用学习的大地测量学来生成加权样品。我们的方法基于球形WFR的Benamou-Brenier型动态配方。为了克服重量变化带来的边界约束的困难,将基于反向映射的kullback-leibler(KL)发散术语引入成本函数。此外,引入了使用粒子速度的新的正则化项,以替代汉密尔顿 - 雅各比方程的动态公式中的潜力。当用于样品生成时,与先前的流量模型相比,与给定加权样品的应用相比,我们的框架可能对具有给定加权样品的应用有益。
translated by 谷歌翻译
大部分计算机生成的动画是通过用钻机来操纵网格创建的。尽管这种方法可以很好地对动物(例如动物)进行动画化的态度,但它的灵活性有限,可以使结构较低的自由形式对象进行动画化。我们介绍了WaseSplines,这是一种基于连续标准化流量和最佳运输的最新进展,用于对非结构化密度进行动画化的新型推理方法。关键思想是训练代表密钥帧之间运动的神经参数化速度场。然后,通过通过速度字段推进密钥帧来计算轨迹。我们解决了另一个Wasserstein Barycenter插值问题,以确保严格遵守关键框架。我们的工具可以通过各种基于PDE的正规化器来对轨迹进行风格化轨迹,从而创造出不同的视觉效果。我们在各种关键框架插值问题上演示了我们的工具,以制作时间连接动画而无需嵌入或索具。
translated by 谷歌翻译
平均场游戏(MFGS)是针对具有大量交互代理的系统的建模框架。他们在经济学,金融和游戏理论中有应用。标准化流(NFS)是一个深层生成模型的家族,通过使用可逆映射来计算数据的可能性,该映射通常通过使用神经网络进行参数化。它们对于密度建模和数据生成很有用。尽管对这两种模型进行了积极的研究,但很少有人注意到两者之间的关系。在这项工作中,我们通过将NF的训练视为解决MFG来揭示MFGS和NFS之间的联系。这是通过根据试剂轨迹重新解决MFG问题的实现,并通过流量体系结构对所得MFG的离散化进行参数化。通过这种联系,我们探讨了两个研究方向。首先,我们采用表达的NF体系结构来准确地求解高维MFG,以避开传统数值方法中维度的诅咒。与其他深度学习方法相比,我们的基于轨迹的公式编码神经网络中的连续性方程,从而更好地近似人口动态。其次,我们对NFS进行运输成本的培训正规,并显示了控制模型Lipschitz绑定的有效性,从而获得了更好的概括性能。我们通过对各种合成和现实生活数据集的全面实验来展示数值结果。
translated by 谷歌翻译
Optimal Transport(OT)提供了一个多功能框架,以几何有意义的方式比较复杂的数据分布。计算Wasserstein距离和概率措施之间的大地测量方法的传统方法需要网络依赖性域离散化,并且受差异性的诅咒。我们提出了Geonet,这是一个网状不变的深神经操作员网络,该网络从输入对的初始和终端分布对到Wasserstein Geodesic连接两个端点分布的非线性映射。在离线训练阶段,Geonet了解了以耦合PDE系统为特征的原始和双空间中OT问题动态提出的鞍点最佳条件。随后的推理阶段是瞬时的,可以在在线学习环境中进行实时预测。我们证明,Geonet在模拟示例和CIFAR-10数据集上达到了与标准OT求解器的可比测试精度,其推断阶段计算成本大大降低了。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
轨迹推断旨在从其时间边缘的快照中恢复人群的动态。为了解决这项任务,Lavenant等人引入了相对于路径空间中的Wiener度量的最小渗透估计量。 ARXIV:2102.09204,并显示出从无限尺寸凸优化问题的解决方案中始终如一地恢复大型漂移扩散过程的动力学。在本文中,我们引入了无网算法来计算该估计器。我们的方法包括通过Schr \“ Odinger Bridges耦合的点云家族(每张快照),该桥也随着嘈杂的梯度下降而演变。我们研究了动力学的平均场限制,并证明了其与所需估计量的全局收敛。这导致了一种具有端到端理论保证的推理方法,可以解决轨迹推理的可解释模型。我们还提出了如何调整方法处理质量变化的方法,在处理单个单元RNA序列数据时,这是一个有用的扩展细胞可以分支并死亡。
translated by 谷歌翻译
最佳运输(OT)理论描述了定义和选择在许多可能的选择中,将概率度量映射到另一个概率的最有效方法。该理论主要用于估计,给定一对源和目标概率测量$(\ MU,\ nu)$,这是一个可以有效地将$ \ mu $映射到$ \ nu $的参数化映射$ t_ \ theta $。在许多应用程序中,例如预测细胞对治疗的响应,数据测量$ \ mu,\ nu $(未处理/处理过的单元的功能)定义了最佳运输问题并非孤立地出现,但与上下文$ c $相关联(治疗)。为了说明并将该上下文纳入OT估计,我们介绍了Condot,一种使用上下文标签$ C_I $标记的几对测量$(\ mu_i,\ nu_i)$使用几对测量$(\ mu_i,\ nu_i)$。我们的目标是从标记对的数据集$ \ {(c_i,((\ mu_i,\ nu_i))中提取%\})\} $学习全局映射$ \ mathcal {t} _ {\ theta} $,不仅是预期的适合数据集中的所有对$ \ {((c_i,(\ mu_i,\ nu_i)))\} $,即$,但应概括以产生有意义的地图$ \ Mathcal {t} _ {\ theta}(c _ {\ text {new}})$在未看到的上下文上调节的$ c _ {\ text {new}} $。我们的方法利用并为部分输入凸神经网络提供了新颖的用法,为此我们引入了受高斯近似启发的强大而有效的初始化策略。我们仅使用对所述扰动的作用观察到遗传或治疗性扰动对单个细胞的任意组合对单个细胞的任意组合的影响的能力。
translated by 谷歌翻译
A normalizing flow (NF) is a mapping that transforms a chosen probability distribution to a normal distribution. Such flows are a common technique used for data generation and density estimation in machine learning and data science. The density estimate obtained with a NF requires a change of variables formula that involves the computation of the Jacobian determinant of the NF transformation. In order to tractably compute this determinant, continuous normalizing flows (CNF) estimate the mapping and its Jacobian determinant using a neural ODE. Optimal transport (OT) theory has been successfully used to assist in finding CNFs by formulating them as OT problems with a soft penalty for enforcing the standard normal distribution as a target measure. A drawback of OT-based CNFs is the addition of a hyperparameter, $\alpha$, that controls the strength of the soft penalty and requires significant tuning. We present JKO-Flow, an algorithm to solve OT-based CNF without the need of tuning $\alpha$. This is achieved by integrating the OT CNF framework into a Wasserstein gradient flow framework, also known as the JKO scheme. Instead of tuning $\alpha$, we repeatedly solve the optimization problem for a fixed $\alpha$ effectively performing a JKO update with a time-step $\alpha$. Hence we obtain a "divide and conquer" algorithm by repeatedly solving simpler problems instead of solving a potentially harder problem with large $\alpha$.
translated by 谷歌翻译
Monge Map是指两个概率分布之间的最佳运输映射,并提供了将一个分发转换为另一个的原则方法。尽管最佳运输问题的数值方法的快速发展,但计算Monge地图仍然具有挑战性,特别是对于高维问题。在本文中,我们提出了一种可扩展算法,用于计算两个概率分布之间的Monge地图。我们的算法基于最佳运输问题的弱形式,因此它仅需要来自边缘的样本而不是其分析表达式,并且可以容纳两个具有不同尺寸的分布之间的最佳运输。我们的算法适用于一般成本函数,与其他现有方法相比,用于使用样本估计Monge Maps的方法,这些方法通常用于二次成本。通过具有合成和现实数据的一系列实验来证明我们的算法的性能。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
在本章中,我们确定了基本的几何结构,这些几何结构是采样,优化,推理和自适应决策问题的基础。基于此识别,我们得出了利用这些几何结构来有效解决这些问题的算法。我们表明,在这些领域中自然出现了广泛的几何理论,范围从测量过程,信息差异,泊松几何和几何整合。具体而言,我们解释了(i)如何利用汉密尔顿系统的符合性几何形状,使我们能够构建(加速)采样和优化方法,(ii)希尔伯特亚空间和Stein操作员的理论提供了一种通用方法来获得可靠的估计器,(iii)(iii)(iii)保留决策的信息几何形状会产生执行主动推理的自适应剂。在整个过程中,我们强调了这些领域之间的丰富联系。例如,推论借鉴了抽样和优化,并且自适应决策通过推断其反事实后果来评估决策。我们的博览会提供了基本思想的概念概述,而不是技术讨论,可以在本文中的参考文献中找到。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
在高维度中整合时间依赖性的fokker-planck方程的选择方法是通过集成相关的随机微分方程来生成溶液中的样品。在这里,我们介绍了基于整合描述概率流的普通微分方程的替代方案。与随机动力学不同,该方程式在以后的任何时候都会从初始密度将样品从溶液中的样品推到样品。该方法具有直接访问数量的优势,这些数量挑战仅估算仅给定解决方案的样品,例如概率电流,密度本身及其熵。概率流程方程取决于溶液对数的梯度(其“得分”),因此A-Priori未知也是如此。为了解决这种依赖性,我们用一个深神网络对分数进行建模,该网络通过根据瞬时概率电流传播一组粒子来实现,该网络可以在直接学习中学习。我们的方法是基于基于得分的生成建模的最新进展,其重要区别是训练程序是独立的,并且不需要来自目标密度的样本才能事先可用。为了证明该方法的有效性,我们考虑了相互作用粒子系统物理学的几个示例。我们发现该方法可以很好地缩放到高维系统,并准确匹配可用的分析解决方案和通过蒙特卡洛计算的力矩。
translated by 谷歌翻译
我们提出了整流的流程,这是一种令人惊讶的简单学习方法(神经)的普通微分方程(ODE)模型,用于在两个经验观察到的分布\ pi_0和\ pi_1之间运输,因此为生成建模和域转移提供了统一的解决方案,以及其他各种任务。涉及分配运输。整流流的想法是学习ode,以遵循尽可能多的连接从\ pi_0和\ pi_1的直径。这是通过解决直接的非线性最小二乘优化问题来实现的,该问题可以轻松地缩放到大型模型,而无需在标准监督学习之外引入额外的参数。直径是特殊的,因此是特殊的,因为它们是两个点之间的最短路径,并且可以精确模拟而无需时间离散,因此可以在计算上产生高效的模型。我们表明,从数据(称为整流)中学习的整流流的过程将\ pi_0和\ pi_1的任意耦合转变为新的确定性耦合,并证明是非侵入的凸面运输成本。此外,递归应用矫正使我们能够获得具有越来越直的路径的流动序列,可以在推理阶段进行粗略的时间离散化来准确地模拟。在实证研究中,我们表明,整流流对图像产生,图像到图像翻译和域的适应性表现出色。特别是,在图像生成和翻译上,我们的方法几乎产生了几乎直流的流,即使是单个Euler离散步骤,也会产生高质量的结果。
translated by 谷歌翻译
Wasserstein BaryCenter是一种原理的方法来表示给定的一组概率分布的加权平均值,利用由最佳运输所引起的几何形状。在这项工作中,我们提出了一种新颖的可扩展算法,以近似于旨在在机器学习中的高维应用的Wassersein重构。我们所提出的算法基于Wassersein-2距离的Kantorovich双重制定以及最近的神经网络架构,输入凸神经网络,其已知参数化凸函数。我们方法的显着特征是:i)仅需要来自边缘分布的样本; ii)与现有方法不同,它代表了具有生成模型的重心,因此可以在不查询边际分布的情况下从重心产生无限样品; III)它与一个边际案例中的生成对抗性模型类似。我们通过在多个实验中将其与最先进的方法进行比较来证明我们的算法的功效。
translated by 谷歌翻译
We investigate the parameterization of deep neural networks that by design satisfy the continuity equation, a fundamental conservation law. This is enabled by the observation that any solution of the continuity equation can be represented as a divergence-free vector field. We hence propose building divergence-free neural networks through the concept of differential forms, and with the aid of automatic differentiation, realize two practical constructions. As a result, we can parameterize pairs of densities and vector fields that always exactly satisfy the continuity equation, foregoing the need for extra penalty methods or expensive numerical simulation. Furthermore, we prove these models are universal and so can be used to represent any divergence-free vector field. Finally, we experimentally validate our approaches by computing neural network-based solutions to fluid equations, solving for the Hodge decomposition, and learning dynamical optimal transport maps.
translated by 谷歌翻译