识别人类行为基本上是一种时空推理问题,并且应该至少在某种程度上不变,不变于人类的外观和所涉及的物体。在这项工作中,这一假设的激励,我们采取了以物体为中心的行动认可方法。多个工程之前研究过这个设置,但它仍然不清楚(i)仔细制作的时空布局的方法如何识别人类行为,以及(ii)如何,以及何时,融合来自布局和外观的信息基于模型。本文的主要焦点是组成/几次射击动作识别,在那里我们倡导多主题的使用(已被证明是对空间推理的)在时空布局上,即对象边界框的配置。我们评估不同的方案,以将视频出现信息注入系统,并在背景混乱的动作识别上基准。在某种东西 - else和行动基因组数据集上,我们演示(i)如何扩展基于时空布局的动作识别的多针注意,(ii)如何通过与布局融合来提高基于外观的模型的性能 - 基于模型,(iii)即使在非成分背景 - 杂乱的视频数据集中,布局和基于外观的模型之间的融合也提高了性能。
translated by 谷歌翻译
最近,视频变压器在视频理解方面取得了巨大成功,超过了CNN性能;然而,现有的视频变换器模型不会明确地模拟对象,尽管对象对于识别操作至关重要。在这项工作中,我们呈现对象区域视频变换器(Orvit),一个\ emph {对象为中心}方法,它与直接包含对象表示的块扩展视频变压器图层。关键的想法是从早期层开始融合以对象形式的表示,并将它们传播到变压器层中,从而影响整个网络的时空表示。我们的orvit块由两个对象级流组成:外观和动态。在外观流中,“对象区域关注”模块在修补程序上应用自我关注和\ emph {对象区域}。以这种方式,Visual对象区域与统一修补程序令牌交互,并通过上下文化对象信息来丰富它们。我们通过单独的“对象 - 动态模块”进一步模型对象动态,捕获轨迹交互,并显示如何集成两个流。我们在四个任务和五个数据集中评估我们的模型:在某事物中的某些问题和几次射击动作识别,以及在AVA上的某些时空动作检测,以及在某种东西上的标准动作识别 - 某种东西 - 东西,潜水48和EPIC-Kitchen100。我们在考虑的所有任务和数据集中展示了强大的性能改进,展示了将对象表示的模型的值集成到变压器体系结构中。对于代码和预用模型,请访问项目页面\ url {https://roeiherz.github.io/orvit/}
translated by 谷歌翻译
这项工作的目的是学习以对象为中心的视频表示形式,以改善对新任务的可转让性,即与动作分类前训练任务不同的任务。为此,我们介绍了基于变压器体系结构的新的以对象为中心的视频识别模型。该模型学习了视频中以对象为中心的摘要向量,并使用这些向量融合视频剪辑的视觉和时空轨迹“模态”。我们还引入了一种新型的轨迹对比损失,以进一步增强这些摘要矢量的物质性。通过在四个数据集上进行实验 - Somethingsometh-v2,Somethingse,Action Genome和Epickitchens-我们表明,以对象为中心的模型优于先验的视频表示(对象 - 敏捷和对象感知)看不见的对象和看不见的环境; (2)小型学习新课程; (3)线性探测到其他下游任务;以及(4)用于标准动作分类。
translated by 谷歌翻译
We introduce the Action Transformer model for recognizing and localizing human actions in video clips. We repurpose a Transformer-style architecture to aggregate features from the spatiotemporal context around the person whose actions we are trying to classify. We show that by using high-resolution, person-specific, class-agnostic queries, the model spontaneously learns to track individual people and to pick up on semantic context from the actions of others. Additionally its attention mechanism learns to emphasize hands and faces, which are often crucial to discriminate an action -all without explicit supervision other than boxes and class labels. We train and test our Action Transformer network on the Atomic Visual Actions (AVA) dataset, outperforming the state-of-the-art by a significant margin using only raw RGB frames as input.
translated by 谷歌翻译
最近的动作识别模型通过整合对象,其位置和互动来取得令人印象深刻的结果。但是,为每个框架获得密集的结构化注释是乏味且耗时的,使这些方法的训练昂贵且可扩展性较低。同时,如果可以在感兴趣的域内或之外使用一小部分带注释的图像,我们如何将它们用于下游任务的视频?我们提出了一个学习框架的结构(简称SVIT),该结构证明了仅在训练过程中仅可用的少量图像的结构才能改善视频模型。 SVIT依靠两个关键见解。首先,由于图像和视频都包含结构化信息,因此我们用一组\ emph {对象令牌}丰富了一个可以在图像和视频中使用的\ emph {对象令牌}的模型。其次,视频中各个帧的场景表示应与静止图像的场景表示“对齐”。这是通过\ emph {frame-clip一致性}损失来实现的,该损失可确保图像和视频之间结构化信息的流动。我们探索场景结构的特定实例化,即\ emph {手对象图},由手和对象组成,其位置为节点,以及触点/no-contact的物理关系作为边缘。 SVIT在多个视频理解任务和数据集上显示出强烈的性能改进;它在EGO4D CVPR'22对象状态本地化挑战中赢得了第一名。对于代码和预算模型,请访问\ url {https://eladb3.github.io/svit/}的项目页面
translated by 谷歌翻译
Modeling the visual changes that an action brings to a scene is critical for video understanding. Currently, CNNs process one local neighbourhood at a time, thus contextual relationships over longer ranges, while still learnable, are indirect. We present TROI, a plug-and-play module for CNNs to reason between mid-level feature representations that are otherwise separated in space and time. The module relates localized visual entities such as hands and interacting objects and transforms their corresponding regions of interest directly in the feature maps of convolutional layers. With TROI, we achieve state-of-the-art action recognition results on the large-scale datasets Something-Something-V2 and EPIC-Kitchens-100.
translated by 谷歌翻译
我们提出了块茎:一种简单的时空视频动作检测解决方案。与依赖于离线演员检测器或手工设计的演员位置假设的现有方法不同,我们建议通过同时执行动作定位和识别从单个表示来直接检测视频中的动作微管。块茎学习一组管芯查询,并利用微调模块来模拟视频剪辑的动态时空性质,其有效地加强了与在时空空间中的演员位置假设相比的模型容量。对于包含过渡状态或场景变更的视频,我们提出了一种上下文意识的分类头来利用短期和长期上下文来加强行动分类,以及用于检测精确的时间动作程度的动作开关回归头。块茎直接产生具有可变长度的动作管,甚至对长视频剪辑保持良好的结果。块茎在常用的动作检测数据集AVA,UCF101-24和JHMDB51-21上优于先前的最先进。
translated by 谷歌翻译
本文提出了一种用于在视频中的手和对象之间建模时空关系的交互推理网络。所提出的相互作用单元利用变压器模块来推理每个作用手,以及与另一方面的时空关系以及与之相互作用的物体。我们表明,建模双手交互对于在EGENTRIC视频中的动作识别至关重要,并证明通过使用定位编码的轨迹,网络可以更好地识别观察到的相互作用。我们在史诗厨房和别的东西上评估我们的建议,并进行消融研究。
translated by 谷歌翻译
视觉变压器正在成为解决计算机视觉问题的强大工具。最近的技术还证明了超出图像域之外的变压器来解决许多与视频相关的任务的功效。其中,由于其广泛的应用,人类的行动识别是从研究界受到特别关注。本文提供了对动作识别的视觉变压器技术的首次全面调查。我们朝着这个方向分析并总结了现有文献和新兴文献,同时突出了适应变形金刚以进行动作识别的流行趋势。由于其专业应用,我们将这些方法统称为``动作变压器''。我们的文献综述根据其架构,方式和预期目标为动作变压器提供了适当的分类法。在动作变压器的背景下,我们探讨了编码时空数据,降低维度降低,框架贴片和时空立方体构造以及各种表示方法的技术。我们还研究了变压器层中时空注意的优化,以处理更长的序列,通常通过减少单个注意操作中的令牌数量。此外,我们还研究了不同的网络学习策略,例如自我监督和零局学习,以及它们对基于变压器的行动识别的相关损失。这项调查还总结了在具有动作变压器重要基准的评估度量评分方面取得的进步。最后,它提供了有关该研究方向的挑战,前景和未来途径的讨论。
translated by 谷歌翻译
To understand the world, we humans constantly need to relate the present to the past, and put events in context. In this paper, we enable existing video models to do the same. We propose a long-term feature bank-supportive information extracted over the entire span of a video-to augment state-of-the-art video models that otherwise would only view short clips of 2-5 seconds. Our experiments demonstrate that augmenting 3D convolutional networks with a long-term feature bank yields state-of-the-art results on three challenging video datasets: AVA, EPIC-Kitchens, and Charades. Code is available online. 1 1 https://github.com/facebookresearch/ video-long-term-feature-banks Input clip (4 seconds) Target frame
translated by 谷歌翻译
当前的时空动作管检测方法通常将一个给定键框的边界框提案扩展到附近帧的3D颞轴和池特征。但是,如果演员的位置或形状通过大型的2D运动和可变性,由于大型摄像机运动,大型演员形状变形,快速演员的动作等,这种合并就无法积累有意义的时空特征。在这项工作中,我们旨在研究在大动作下的动作检测中观察到Cuboid感知特征聚集的性能。此外,我们建议通过跟踪参与者并沿各个轨道进行时间特征聚集来增强演员特征表示。我们在各种固定时间尺度的动作管/轨道框之间使用相交的行动者(IOU)定义了演员运动。随着时间的推移,具有较大运动的动作将导致较低的IOU,并且较慢的动作将保持更高的IOU。我们发现,轨道感知功能聚集始终取得了巨大的改善,尤其是对于与Cuboid感知的基线相比,在大型运动下进行的动作。结果,我们还报告了大规模多运动数据集的最先进。
translated by 谷歌翻译
人类的行为通常是组合结构或图案,即受试者,物体,以及两者之间的时空相互作用。因此,发现这种结构是一种有价值的方式,可以推理互动的动态并识别动作。在本文中,我们介绍了一个新的子图设计,以表示和编码视频中每个动作的辨别模式。具体而言,我们呈现多尺度的子图学习(MOTE)框架,该框架,该框架新颖地构建空间时间图并将图形集群相对于节点的数量在每个比例上的紧凑型子图中。从技术上讲,Mudle在每个视频剪辑中产生3D边界框,即管弦,作为曲线节点,并将密集的连接作为管之间的图形边缘。对于每个操作类别,我们通过学习高斯混合层执行在线群集以将图形分解为每种比例的子图,并选择判别子图作为动作原型以进行识别。在某种东西上进行了广泛的实验 - 某种东西 - 某种东西 - 东西-400数据集,并且与最先进的方法相比,报告了卓越的结果。更值得注意的是,我们的柱子达到了最佳报告的准确性为65.0%的东西 - 某种东西的验证集。
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
Action recognition models have achieved impressive results by incorporating scene-level annotations, such as objects, their relations, 3D structure, and more. However, obtaining annotations of scene structure for videos requires a significant amount of effort to gather and annotate, making these methods expensive to train. In contrast, synthetic datasets generated by graphics engines provide powerful alternatives for generating scene-level annotations across multiple tasks. In this work, we propose an approach to leverage synthetic scene data for improving video understanding. We present a multi-task prompt learning approach for video transformers, where a shared video transformer backbone is enhanced by a small set of specialized parameters for each task. Specifically, we add a set of ``task prompts'', each corresponding to a different task, and let each prompt predict task-related annotations. This design allows the model to capture information shared among synthetic scene tasks as well as information shared between synthetic scene tasks and a real video downstream task throughout the entire network. We refer to this approach as ``Promptonomy'', since the prompts model a task-related structure. We propose the PromptonomyViT model (PViT), a video transformer that incorporates various types of scene-level information from synthetic data using the ``Promptonomy'' approach. PViT shows strong performance improvements on multiple video understanding tasks and datasets.
translated by 谷歌翻译
translated by 谷歌翻译
具有注释的缺乏大规模的真实数据集使转移学习视频活动的必要性。我们的目标是为少数行动分类开发几次拍摄转移学习的有效方法。我们利用独立培训的本地视觉提示来学习可以从源域传输的表示,该源域只能使用少数示例来从源域传送到不同的目标域。我们使用的视觉提示包括对象 - 对象交互,手掌和地区内的动作,这些地区是手工位置的函数。我们采用了一个基于元学习的框架,以提取部署的视觉提示的独特和域不变组件。这使得能够在使用不同的场景和动作配置捕获的公共数据集中传输动作分类模型。我们呈现了我们转让学习方法的比较结果,并报告了阶级阶级和数据间数据间际传输的最先进的行动分类方法。
translated by 谷歌翻译
自我关注学习成对相互作用以模型远程依赖性,从而产生了对视频动作识别的巨大改进。在本文中,我们寻求更深入地了解视频中的时间建模的自我关注。我们首先表明通过扁平所有像素通过扁平化的时空信息的缠结建模是次优的,未明确捕获帧之间的时间关系。为此,我们介绍了全球暂时关注(GTA),以脱钩的方式在空间关注之上进行全球时间关注。我们在像素和语义类似地区上应用GTA,以捕获不同水平的空间粒度的时间关系。与计算特定于实例的注意矩阵的传统自我关注不同,GTA直接学习全局注意矩阵,该矩阵旨在编码遍布不同样本的时间结构。我们进一步增强了GTA的跨通道多头方式,以利用通道交互以获得更好的时间建模。对2D和3D网络的广泛实验表明,我们的方法一致地增强了时间建模,并在三个视频动作识别数据集中提供最先进的性能。
translated by 谷歌翻译
文本和视频之间交叉模态检索的任务旨在了解视觉和语言之间的对应关系。现有研究遵循基于文本和视频嵌入的测量文本视频相似度的趋势。在常见的做法中,通过将视频帧馈送到用于全球视觉特征提取的视频帧或仅通过使用图形卷积网络使用本地细粒度的框架区域来实现简单的语义关系来构造视频表示。然而,这些视频表示在学习视频表示中的视觉组件之间没有充分利用时空关系,从而无法区分具有相同视觉组件但具有不同关系的视频。为了解决这个问题,我们提出了一种视觉时空关系增强的网络(VSR-Net),这是一种新的跨模型检索框架,其考虑组件之间的空间视觉关系,以增强桥接文本 - 视频模型中的全局视频表示。具体地,使用多层时空变压器来编码视觉时空关系,以学习视觉关系特征。我们将全局视觉和细粒度的关系功能与两个嵌入空格上的文本功能对齐,用于交叉模态文本 - 视频检索。在MSR-VTT和MSVD数据集中进行了广泛的实验。结果表明了我们提出的模型的有效性。我们将发布促进未来研究的代码。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
动态场景图表形式的结构化视频表示是有关多个视频理解任务的有效工具。与场景图的任务相比,由于场景的时间动态和预测的固有时间波动,动态场景图生成是更具挑战性。我们表明捕获长期依赖性是有效生成动态场景图的关键。我们通过从视频中构造一致的长期对象轨迹来介绍检测跟踪 - 识别范例,然后是捕获对象和视觉关系的动态。实验结果表明,我们的动态场景图检测变压器(DSG-DETR)在基准数据集动作基因组上的显着余量优于最先进的方法。我们还进行消融研究并验证所提出的方法的每个组成部分的有效性。
translated by 谷歌翻译