translated by 谷歌翻译
人类的行为通常是组合结构或图案,即受试者,物体,以及两者之间的时空相互作用。因此,发现这种结构是一种有价值的方式,可以推理互动的动态并识别动作。在本文中,我们介绍了一个新的子图设计,以表示和编码视频中每个动作的辨别模式。具体而言,我们呈现多尺度的子图学习(MOTE)框架,该框架,该框架新颖地构建空间时间图并将图形集群相对于节点的数量在每个比例上的紧凑型子图中。从技术上讲,Mudle在每个视频剪辑中产生3D边界框,即管弦,作为曲线节点,并将密集的连接作为管之间的图形边缘。对于每个操作类别,我们通过学习高斯混合层执行在线群集以将图形分解为每种比例的子图,并选择判别子图作为动作原型以进行识别。在某种东西上进行了广泛的实验 - 某种东西 - 某种东西 - 东西-400数据集,并且与最先进的方法相比,报告了卓越的结果。更值得注意的是,我们的柱子达到了最佳报告的准确性为65.0%的东西 - 某种东西的验证集。
translated by 谷歌翻译
建模空间关系对于识别人类行为,尤其是当人类与物体相互作用时,而多个物体随着时间的推移会随着时间的推移而出现多个物体。大多数现有的行动识别模型专注于学习场景的整体视觉线索,而是无视内容的内容细粒度,可以通过学习人对象关系和互动来捕获。在本文中,我们通过利用当地和全球背景的互动来学习人对象关系。因此,我们提出了全球局部相互作用蒸馏网(GLIDN),通过空间和时间通过知识蒸馏来学习人和对象相互作用,以进行细粒度的现场理解。 Glidn将人和对象编码为Graph节点,并通过图注意网络了解本地和全球关系。本地上下文图通过在特定时间步骤中捕获它们的共同发生来了解帧级别的人类和对象之间的关系。全局关系图是基于人类和对象交互的视频级构建的,识别它们在视频序列中的长期关系。更重要的是,我们研究了如何将这些图表的知识如何蒸馏到它们的对应部分,以改善人对象相互作用(Hoi)识别。通过在两个数据集上进行全面的实验,我们评估我们的模型,包括Charades和CAD-120数据集。我们已经实现了比基线和对应方法更好的结果。
translated by 谷歌翻译
自我关注学习成对相互作用以模型远程依赖性,从而产生了对视频动作识别的巨大改进。在本文中,我们寻求更深入地了解视频中的时间建模的自我关注。我们首先表明通过扁平所有像素通过扁平化的时空信息的缠结建模是次优的,未明确捕获帧之间的时间关系。为此,我们介绍了全球暂时关注(GTA),以脱钩的方式在空间关注之上进行全球时间关注。我们在像素和语义类似地区上应用GTA,以捕获不同水平的空间粒度的时间关系。与计算特定于实例的注意矩阵的传统自我关注不同,GTA直接学习全局注意矩阵,该矩阵旨在编码遍布不同样本的时间结构。我们进一步增强了GTA的跨通道多头方式,以利用通道交互以获得更好的时间建模。对2D和3D网络的广泛实验表明,我们的方法一致地增强了时间建模,并在三个视频动作识别数据集中提供最先进的性能。
translated by 谷歌翻译
人类对象相互作用(HOI)识别的关键是推断人与物体之间的关系。最近,该图像的人类对象相互作用(HOI)检测取得了重大进展。但是,仍然有改善视频HOI检测性能的空间。现有的一阶段方法使用精心设计的端到端网络来检测视频段并直接预测交互。它使网络的模型学习和进一步的优化更加复杂。本文介绍了空间解析和动态时间池(SPDTP)网络,该网络将整个视频作为时空图作为人类和对象节点作为输入。与现有方法不同,我们提出的网络通过显式空间解析预测交互式和非相互作用对之间的差异,然后执行交互识别。此外,我们提出了一个可学习且可区分的动态时间模块(DTM),以强调视频的关键帧并抑制冗余帧。此外,实验结果表明,SPDTP可以更多地关注主动的人类对象对和有效的密钥帧。总体而言,我们在CAD-1220数据集和某些ELSE数据集上实现了最先进的性能。
translated by 谷歌翻译
Modeling the visual changes that an action brings to a scene is critical for video understanding. Currently, CNNs process one local neighbourhood at a time, thus contextual relationships over longer ranges, while still learnable, are indirect. We present TROI, a plug-and-play module for CNNs to reason between mid-level feature representations that are otherwise separated in space and time. The module relates localized visual entities such as hands and interacting objects and transforms their corresponding regions of interest directly in the feature maps of convolutional layers. With TROI, we achieve state-of-the-art action recognition results on the large-scale datasets Something-Something-V2 and EPIC-Kitchens-100.
translated by 谷歌翻译
Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method [4] in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our nonlocal models can compete or outperform current competition winners on both Kinetics and Charades datasets.In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code will be made available.
translated by 谷歌翻译
在计算机视觉中长期以来一直研究了时间行动定位。现有的最先进的动作定位方法将每个视频划分为多个动作单位(即,在一级方法中的两级方法和段中的提案),然后单独地对每个视频进行操作,而不明确利用他们在学习期间的关系。在本文中,我们声称,动作单位之间的关系在行动定位中发挥着重要作用,并且更强大的动作探测器不仅应捕获每个动作单元的本地内容,还应允许更广泛的视野与相关的上下文它。为此,我们提出了一般图表卷积模块(GCM),可以轻松插入现有的动作本地化方法,包括两阶段和单级范式。具体而言,我们首先构造一个图形,其中每个动作单元被表示为节点,并且两个动作单元之间作为边缘之间的关系。在这里,我们使用两种类型的关系,一个类型的关系,用于捕获不同动作单位之间的时间连接,另一类是用于表征其语义关系的另一个关系。特别是对于两级方法中的时间连接,我们进一步探索了两种不同的边缘,一个连接重叠动作单元和连接周围但脱节的单元的另一个。在我们构建的图表上,我们将图形卷积网络(GCNS)应用于模拟不同动作单位之间的关系,这能够了解更有信息的表示来增强动作本地化。实验结果表明,我们的GCM始终如一地提高了现有行动定位方法的性能,包括两阶段方法(例如,CBR和R-C3D)和一级方法(例如,D-SSAD),验证我们的一般性和有效性GCM。
translated by 谷歌翻译
有效地对视频中的空间信息进行建模对于动作识别至关重要。为了实现这一目标,最先进的方法通常采用卷积操作员和密集的相互作用模块,例如非本地块。但是,这些方法无法准确地符合视频中的各种事件。一方面,采用的卷积是有固定尺度的,因此在各种尺度的事件中挣扎。另一方面,密集的相互作用建模范式仅在动作 - 欧元零件时实现次优性能,给最终预测带来了其他噪音。在本文中,我们提出了一个统一的动作识别框架,以通过引入以下设计来研究视频内容的动态性质。首先,在提取本地提示时,我们会生成动态尺度的时空内核,以适应各种事件。其次,为了将这些线索准确地汇总为全局视频表示形式,我们建议仅通过变压器在一些选定的前景对象之间进行交互,从而产生稀疏的范式。我们将提出的框架称为事件自适应网络(EAN),因为这两个关键设计都适应输入视频内容。为了利用本地细分市场内的短期运动,我们提出了一种新颖有效的潜在运动代码(LMC)模块,进一步改善了框架的性能。在几个大规模视频数据集上进行了广泛的实验,例如,某种东西,动力学和潜水48,验证了我们的模型是否在低拖鞋上实现了最先进或竞争性的表演。代码可在:https://github.com/tianyuan168326/ean-pytorch中找到。
translated by 谷歌翻译
最近,视频变压器在视频理解方面取得了巨大成功,超过了CNN性能;然而,现有的视频变换器模型不会明确地模拟对象,尽管对象对于识别操作至关重要。在这项工作中,我们呈现对象区域视频变换器(Orvit),一个\ emph {对象为中心}方法,它与直接包含对象表示的块扩展视频变压器图层。关键的想法是从早期层开始融合以对象形式的表示,并将它们传播到变压器层中,从而影响整个网络的时空表示。我们的orvit块由两个对象级流组成:外观和动态。在外观流中,“对象区域关注”模块在修补程序上应用自我关注和\ emph {对象区域}。以这种方式,Visual对象区域与统一修补程序令牌交互,并通过上下文化对象信息来丰富它们。我们通过单独的“对象 - 动态模块”进一步模型对象动态,捕获轨迹交互,并显示如何集成两个流。我们在四个任务和五个数据集中评估我们的模型:在某事物中的某些问题和几次射击动作识别,以及在AVA上的某些时空动作检测,以及在某种东西上的标准动作识别 - 某种东西 - 东西,潜水48和EPIC-Kitchen100。我们在考虑的所有任务和数据集中展示了强大的性能改进,展示了将对象表示的模型的值集成到变压器体系结构中。对于代码和预用模型,请访问项目页面\ url {https://roeiherz.github.io/orvit/}
translated by 谷歌翻译
基于文本的视频细分旨在通过用文本查询指定演员及其表演动作来细分视频序列中的演员。由于\ emph {emph {语义不对称}的问题,以前的方法无法根据演员及其动作以细粒度的方式将视频内容与文本查询对齐。 \ emph {语义不对称}意味着在多模式融合过程中包含不同量的语义信息。为了减轻这个问题,我们提出了一个新颖的演员和动作模块化网络,该网络将演员及其动作分别定位在两个单独的模块中。具体来说,我们首先从视频和文本查询中学习与参与者相关的内容,然后以对称方式匹配它们以定位目标管。目标管包含所需的参与者和动作,然后将其送入完全卷积的网络,以预测演员的分割掩模。我们的方法还建立了对象的关联,使其与所提出的时间建议聚合机制交叉多个框架。这使我们的方法能够有效地细分视频并保持预测的时间一致性。整个模型允许联合学习参与者的匹配和细分,并在A2D句子和J-HMDB句子数据集上实现单帧细分和完整视频细分的最新性能。
translated by 谷歌翻译
To understand the world, we humans constantly need to relate the present to the past, and put events in context. In this paper, we enable existing video models to do the same. We propose a long-term feature bank-supportive information extracted over the entire span of a video-to augment state-of-the-art video models that otherwise would only view short clips of 2-5 seconds. Our experiments demonstrate that augmenting 3D convolutional networks with a long-term feature bank yields state-of-the-art results on three challenging video datasets: AVA, EPIC-Kitchens, and Charades. Code is available online. 1 1 https://github.com/facebookresearch/ video-long-term-feature-banks Input clip (4 seconds) Target frame
translated by 谷歌翻译
Spatiotemporal and motion features are two complementary and crucial information for video action recognition. Recent state-of-the-art methods adopt a 3D CNN stream to learn spatiotemporal features and another flow stream to learn motion features. In this work, we aim to efficiently encode these two features in a unified 2D framework. To this end, we first propose an STM block, which contains a Channel-wise SpatioTemporal Module (CSTM) to present the spatiotemporal features and a Channel-wise Motion Module (CMM) to efficiently encode motion features. We then replace original residual blocks in the ResNet architecture with STM blcoks to form a simple yet effective STM network by introducing very limited extra computation cost. Extensive experiments demonstrate that the proposed STM network outperforms the state-of-the-art methods on both temporal-related datasets (i.e., Something-Something v1 & v2 and Jester) and scene-related datasets (i.e., Kinetics-400, UCF-101, and HMDB-51) with the help of encoding spatiotemporal and motion features together. * The work was done during an internship at SenseTime.
translated by 谷歌翻译
本文解决了颞句的接地。以前的作品通常通过学习帧级视频功能来解决此任务并将其与文本信息对齐。这些作品的一个主要限制是,由于帧级特征提取,它们未能利用具有微妙的外观差异的模糊视频帧。最近,一些方法采用更快的R-CNN来提取每帧中的详细物体特征来区分细粒的外观相似性。然而,由于对象检测模型缺乏时间建模,因此通过更快的R-CNN提取的对象级别特征遭受缺失的运动分析。为了解决这个问题,我们提出了一种新颖的运动外观推理网络(MARN),其包括动作感知和外观感知对象特征,以更好的原因对象关系来建立连续帧之间的活动。具体而言,我们首先介绍两个单独的视频编码器以将视频嵌入到相应的主导和外观 - 方面对象表示中。然后,我们开发单独的运动和外观分支,以分别学习运动引导和外观引导的对象关系。最后,来自两个分支的运动和外观信息都与用于最终接地的更多代表性的特征相关联。对两个具有挑战性的数据集(Chardes-Sta和Tacos)的广泛实验表明,我们提出的马恩在以前的最先进的方法中大大优于大幅度。
translated by 谷歌翻译
In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly gains in accuracy. Our empirical study leads to the design of a new spatiotemporal convolutional block "R(2+1)D" which produces CNNs that achieve results comparable or superior to the state-of-theart on Sports-1M, Kinetics, UCF101, and HMDB51.
translated by 谷歌翻译
Temporal modeling is key for action recognition in videos. It normally considers both short-range motions and long-range aggregations. In this paper, we propose a Temporal Excitation and Aggregation (TEA) block, including a motion excitation (ME) module and a multiple temporal aggregation (MTA) module, specifically designed to capture both short-and long-range temporal evolution. In particular, for short-range motion modeling, the ME module calculates the feature-level temporal differences from spatiotemporal features. It then utilizes the differences to excite the motion-sensitive channels of the features. The long-range temporal aggregations in previous works are typically achieved by stacking a large number of local temporal convolutions. Each convolution processes a local temporal window at a time. In contrast, the MTA module proposes to deform the local convolution to a group of subconvolutions, forming a hierarchical residual architecture. Without introducing additional parameters, the features will be processed with a series of sub-convolutions, and each frame could complete multiple temporal aggregations with neighborhoods. The final equivalent receptive field of temporal dimension is accordingly enlarged, which is capable of modeling the long-range temporal relationship over distant frames. The two components of the TEA block are complementary in temporal modeling. Finally, our approach achieves impressive results at low FLOPs on several action recognition benchmarks, such as Kinetics, Something-Something, HMDB51, and UCF101, which confirms its effectiveness and efficiency.
translated by 谷歌翻译
基于视频的人重新识别(RE-ID)是视觉监控系统中的重要技术,旨在匹配由不同摄像机捕获的人们的视频片段。现有方法主要基于卷积神经网络(CNN),其构建块一次处理局部邻居像素,或者当3D卷绕用于建模时间信息时,遭受由人移动引起的未对准问题。在本文中,我们建议克服具有以人为本的图表方法的正常卷曲的局限性。具体地,提取位于人关节键点的特征并将其作为空间时间图连接。然后通过使用图形卷积网络(GCN)从连接节点传递的消息更新这些关键点特征。在培训期间,GCN可以附加到任何基于CNN的人RE-ID模型,以协助在特征映射上进行表示学习,同时可以在培训后丢弃以获得更好的推广速度。我们的方法通过生成的人关键点和新注释的数据集:posetrackreid,对火星数据集的基于CNN的基线模型进行了重大改进。它还在与现有作品相比,在前1个精度和平均平均精度方面定义了新的最先进的方法。
translated by 谷歌翻译
图形卷积网络由于非欧几里得数据的出色建模能力而广泛用于基于骨架的动作识别。由于图形卷积是局部操作,因此它只能利用短距离关节依赖性和短期轨迹,但无法直接建模遥远的关节关系和远程时间信息,这些信息对于区分各种动作至关重要。为了解决此问题,我们提出了多尺度的空间图卷积(MS-GC)模块和一个多尺度的时间图卷积(MT-GC)模块,以在空间和时间尺寸中丰富模型的接受场。具体而言,MS-GC和MT-GC模块将相应的局部图卷积分解为一组子图形卷积,形成了层次的残差体系结构。在不引入其他参数的情况下,该功能将通过一系列子图卷积处理,每个节点都可以与其邻域一起完成多个空间和时间聚集。因此,最终的等效接收场被扩大,能够捕获空间和时间域中的短期和远程依赖性。通过将这两个模块耦合为基本块,我们进一步提出了一个多尺度的空间时间图卷积网络(MST-GCN),该网络(MST-GCN)堆叠了多个块以学习有效的运动表示行动识别的运动表示。拟议的MST-GCN在三个具有挑战性的基准数据集(NTU RGB+D,NTU-1220 RGB+D和动力学 - 骨骼)上实现了出色的性能,用于基于骨架的动作识别。
translated by 谷歌翻译
Dynamics of human body skeletons convey significant information for human action recognition. Conventional approaches for modeling skeletons usually rely on hand-crafted parts or traversal rules, thus resulting in limited expressive power and difficulties of generalization. In this work, we propose a novel model of dynamic skeletons called Spatial-Temporal Graph Convolutional Networks (ST-GCN), which moves beyond the limitations of previous methods by automatically learning both the spatial and temporal patterns from data. This formulation not only leads to greater expressive power but also stronger generalization capability. On two large datasets, Kinetics and NTU-RGBD, it achieves substantial improvements over mainstream methods.
translated by 谷歌翻译
We introduce the Action Transformer model for recognizing and localizing human actions in video clips. We repurpose a Transformer-style architecture to aggregate features from the spatiotemporal context around the person whose actions we are trying to classify. We show that by using high-resolution, person-specific, class-agnostic queries, the model spontaneously learns to track individual people and to pick up on semantic context from the actions of others. Additionally its attention mechanism learns to emphasize hands and faces, which are often crucial to discriminate an action -all without explicit supervision other than boxes and class labels. We train and test our Action Transformer network on the Atomic Visual Actions (AVA) dataset, outperforming the state-of-the-art by a significant margin using only raw RGB frames as input.
translated by 谷歌翻译