图像的持久性拓扑特性是一个附加描述符,提供了传统神经网络可能无法发现的见解。该领域的现有研究主要侧重于有效地将数据的拓扑特性整合到学习过程中,以增强性能。但是,没有现有的研究来证明引入拓扑特性可以提高或损害性能的所有可能场景。本文对拓扑特性在各种培训方案中的图像分类有效性进行了详细分析,定义为:训练样本的数量,训练数据的复杂性和骨干网络的复杂性。我们确定从拓扑功能中受益最大的场景,例如,在小数据集中培训简单的网络。此外,我们讨论了数据集的拓扑一致性问题,该问题是使用拓扑特征进行分类的主要瓶颈之一。我们进一步证明了拓扑不一致如何损害某些情况的性能。
translated by 谷歌翻译
我们提出了一种使用持久性同源性(pH)的新的更有效的方法,一种方法来比较两个数据集的拓扑,用于训练深度网络以在空中图像中描绘道路网络和显微镜扫描中的神经元过程。它的本质是一种新的过滤功能,从两个现有技术的融合导出:基于阈值的过滤,以前用于将深网络培训到分段医学图像,并用高度函数过滤,以便在比较2D和3D形状之前使用。我们通过实验证明,深入的网络培训了我们的持久性同源性的损失,即道路网络和神经元过程的重建,这些过程比现有的拓扑和非拓扑损失功能更好地保持原件的连接性。
translated by 谷歌翻译
持续的同源性(PH)是拓扑数据分析中最流行的方法之一。尽管PH已用于许多不同类型的应用程序中,但其成功背后的原因仍然难以捉摸。特别是,尚不知道哪种类别的问题最有效,或者在多大程度上可以检测几何或拓扑特征。这项工作的目的是确定pH在数据分析中比其他方法更好甚至更好的问题。我们考虑三个基本形状分析任务:从形状采样的2D和3D点云中检测孔数,曲率和凸度。实验表明,pH在这些任务中取得了成功,超过了几个基线,包括PointNet,这是一个精确地受到点云的属性启发的体系结构。此外,我们观察到,pH对于有限的计算资源和有限的培训数据以及分布外测试数据,包括各种数据转换和噪声,仍然有效。
translated by 谷歌翻译
Image segmentation is a largely researched field where neural networks find vast applications in many facets of technology. Some of the most popular approaches to train segmentation networks employ loss functions optimizing pixel-overlap, an objective that is insufficient for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the correct topology of the segmented structures. However, so far, none of the existing approaches achieve a spatially correct matching between the topological features of ground truth and prediction. In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching. We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting. Furthermore, we propose an efficient algorithm to compute the Betti matching of images. We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations, which is more sensitive than the well-established Betti number error. Moreover, the differentiability of the Betti matching loss enables its use as a loss function. It improves the topological performance of segmentation networks across six diverse datasets while preserving the volumetric performance. Our code is available in https://github.com/nstucki/Betti-matching.
translated by 谷歌翻译
拓扑数据分析(TDA)是来自数据科学和数学的工具,它开始在环境科学领域引起波浪。在这项工作中,我们寻求对TDA工具的直观且可理解的介绍,该工具对于分析图像(即持续存在同源性)特别有用。我们简要讨论理论背景,但主要关注理解该工具的输出并讨论它可以收集的信息。为此,我们围绕着一个指导示例进行讨论,该指导示例是对RASP等人研究的糖,鱼类,花朵和砾石数据集进行分类。 al。 2020年(Arxiv:1906:01906)。我们证明了如何使用简单的机器学习算法来获得良好的结果,并详细探讨了如何用图像级特征来解释这种行为。持续同源性的核心优势之一是它的解释性是可解释的,因此在本文中,我们不仅讨论了我们发现的模式,而且要考虑到为什么我们对持续性同源性理论的了解,因此可以期待这些结果。我们的目标是,本文的读者将更好地了解TDA和持续的同源性,能够确定自己的问题和数据集,为此,持续的同源性可能会有所帮助,并从应用程序中获得对结果的理解包括GitHub示例代码。
translated by 谷歌翻译
诸如深度感知和语义分割的密集预测任务是计算机视觉中具有具体拓扑描述的重要应用,其在将图像划分到连接的组件或估计与图像中的对象相对应的少量局部极值的函数来估计函数。我们基于持续同源性的拓扑正常化形式,可用于具有这些拓扑描述的密集预测任务。实验结果表明,输出拓扑也可以出现在培训的神经网络的内部激活中,允许在训练期间新颖的拓扑正则化对神经网络的内部状态,降低正规化的计算成本。我们证明,内部激活的这种拓扑正规化导致了几个问题和架构的收敛性和测试基准。
translated by 谷歌翻译
我们考虑了$ d $维图像的新拓扑效率化,该图像通过在计算持久性之前与各种过滤器进行卷积。将卷积滤波器视为图像中的图案,结果卷积的持久图描述了图案在整个图像中分布的方式。我们称之为卷积持久性的管道扩展了拓扑结合图像数据中模式的能力。的确,我们证明(通常说)对于任何两个图像,人们都可以找到某些过滤器,它们会为其产生不同的持久图,以便给定图像的所有可能的卷积持久性图的收集是一个不变的不变性。通过表现出卷积的持久性是另一种拓扑不变的持续性副学变换的特殊情况,这证明了这一点。卷积持久性的其他优势是提高噪声的稳定性和鲁棒性,对数据依赖性矢量化的更大灵活性以及对具有较大步幅向量的卷积的计算复杂性降低。此外,我们还有一套实验表明,即使人们使用随机过滤器并通过仅记录其总持久性,卷积大大提高了持久性的预测能力,即使一个人使用随机过滤器并将结果图进行量化。
translated by 谷歌翻译
从2D图像重建3D对象对于我们的大脑和机器学习算法都有挑战。为了支持此空间推理任务,有关对象整体形状的上下文信息至关重要。但是,此类信息不会通过既定的损失条款(例如骰子损失)捕获。我们建议通过在重建损失中包括多尺度拓扑特征,例如连接的组件,周期和空隙来补充几何形状信息。我们的方法使用立方复合物来计算3D体积数据的拓扑特征,并采用最佳传输距离来指导重建过程。这种拓扑感知的损失是完全可区分的,在计算上有效,并且可以添加到任何神经网络中。我们通过将损失纳入SHAPR来证明我们的损失的实用性,该模型用于根据2D显微镜图像预测单个细胞的3D细胞形状。使用利用单个对象的几何信息和拓扑信息来评估其形状的混合损失,我们发现拓扑信息大大提高了重建质量,从而突出了其从图像数据集中提取更多相关特征的能力。
translated by 谷歌翻译
拓扑数据分析(TDA)的主要挑战之一是从机器学习算法直接可用的持久图中提取功能。实际上,持久性图是R2中的本质上(多级)点,并且不能以直接的方式视为向量。在本文中,我们介绍了持平性器,这是一个接受持久图作为输入的第一变压器神经网络架构。坚持不懈的体系结构显着优于古典合成基准数据集上以前的拓扑神经网络架构。此外,它满足了通用近似定理。这使我们能够介绍一种用于拓扑机学习的第一解释方法,我们在两个示例中探讨。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
心脏磁共振(CMR)图像的多类分割,将数据分离为具有已知结构和构型的解剖组分。最流行的基于CNN的方法是使用像素明智的损失函数优化的,对表征解剖结构的空间扩展特征一无所知。因此,尽管与地面真理共享高空间重叠,但推断的基于CNN的分割可能缺乏连贯性,包括伪造的连接组件,孔和空隙。这样的结果令人难以置信,违反了预期的解剖拓扑。作为响应,已经提出了基于持续的同源性损失功能(单级)以捕获全局解剖特征。我们的工作将这些方法扩展到多级分割任务。我们的损失功能构建了所有类标签和类标签对的丰富拓扑描述,我们使用基于CNN的后处理框架可以预测和统计学上的分割拓扑改进。我们还基于立方复合物和并行执行,提出(并提供)高效的实现,这是第一次在高分辨率3D数据中实现实际应用。我们证明了我们在2D短轴和3D全心CMR细分方面的方法,对两个公开可用数据集的性能进行了详细而忠实的分析。
translated by 谷歌翻译
近年来,变压器模型的引入引发了自然语言处理(NLP)的革命。伯特(Bert)是仅使用注意机制的第一批文本编码者之一,没有任何复发部分来实现许多NLP任务的最新结果。本文使用拓扑数据分析介绍了文本分类器。我们将BERT的注意图转换为注意图作为该分类器的唯一输入。该模型可以解决诸如将垃圾邮件与HAM消息区分开的任务,认识到语法正确的句子,或将电影评论评估为负面还是正面。它与BERT基线相当表现,并在某些任务上表现优于它。此外,我们提出了一种新方法,以减少拓扑分类器考虑的BERT注意力头的数量,这使我们能够修剪从144个下降到只有10个,而不会降低性能。我们的工作还表明,拓扑模型比原始的BERT模型表现出对对抗性攻击的鲁棒性,该模型在修剪过程中维持。据我们所知,这项工作是第一个在NLP背景下以对抗性攻击的基于拓扑的模型。
translated by 谷歌翻译
在半导体制造中,晶圆地图缺陷模式为设施维护和产量管理提供了关键信息,因此缺陷模式的分类是制造过程中最重要的任务之一。在本文中,我们提出了一种新颖的方式来表示缺陷模式作为有限维矢量的形状,该矢量将用作分类神经网络算法的输入。主要思想是使用拓扑数据分析(TDA)的持续同源性理论提取每种模式的拓扑特征。通过使用模拟数据集进行的一些实验,我们表明,与使用卷积神经网络(CNN)的方法相比,所提出的方法在训练方面更快,更有效地训练,这是晶圆映射缺陷模式分类的最常见方法。此外,当训练数据的数量不够并且不平衡时,我们的方法优于基于CNN的方法。
translated by 谷歌翻译
与许多研究领域相关的管状网络样结构(例如血管,神经元或道路)的准确分割与许多研究领域有关。对于这种结构,拓扑是它们最重要的特征。特别保留连接性:在血管网络的情况下,缺少连接的容器完全改变了血液流动的动力学。我们介绍了一种新颖的相似性度量,称为Centerlinedice(短CLDICE),该度量是根据分割掩模及其(形态)骨骼的相交进行计算的。从理论上讲,我们证明,CLDICE保证拓扑保存至二进制2D和3D分割的同型等效性。扩展这一点,我们提出了一种计算高效,可区分的损失函数(软性的),用于训练任意的神经分割网络。我们在五个公共数据集上基准了软性损失,包括船只,道路和神经元(2D和3D)。对软性播放的培训可通过更准确的连通性信息,更高的图形相似性和更好的体积分数进行分割。
translated by 谷歌翻译
无监督的特征学习通常会发现捕获复杂数据结构的低维嵌入。对于专家的任务可获得专家,将其纳入学习的代表可能会导致更高质量的嵌入品。例如,这可以帮助人们将数据嵌入给定的簇数,或者容纳阻止一个人直接在模型上衍生数据分布的噪声,然后可以更有效地学习。然而,缺乏将不同的先前拓扑知识集成到嵌入中的一般工具。虽然最近已经开发了可微分的拓扑层,但可以(重新)形状嵌入预定的拓扑模型,他们对代表学习有两个重要的局限性,我们在本文中解决了这一点。首先,目前建议的拓扑损失未能以自然的方式代表诸如群集和耀斑的简单模型。其次,这些损失忽略了对学习有用的数据中的所有原始结构(例如邻域)信息。我们通过引入一组新的拓扑损失来克服这些限制,并提出其用法作为拓扑正规规范数据嵌入来自然代表预定模型的一种方法。我们包括彻底的综合和实际数据实验,突出了这种方法的有用性和多功能性,其中应用范围从建模高维单胞胎数据进行建模到绘图嵌入。
translated by 谷歌翻译
不服从统计学习理论的古典智慧,即使它们通常包含数百万参数,现代深度神经网络也概括了井。最近,已经表明迭代优化算法的轨迹可以具有分形结构,并且它们的泛化误差可以与这种分形的复杂性正式连接。这种复杂性由分形的内在尺寸测量,通常比网络中的参数数量小得多。尽管这种透视提供了对为什么跨分层化的网络不会过度装备的解释,但计算内在尺寸(例如,在训练期间进行监测泛化)是一种臭名昭着的困难任务,即使在中等环境维度中,现有方法也通常失败。在这项研究中,我们考虑了从拓扑数据分析(TDA)的镜头上的这个问题,并开发了一个基于严格的数学基础的通用计算工具。通过在学习理论和TDA之间进行新的联系,我们首先说明了泛化误差可以在称为“持久同源维度”(PHD)的概念中,与先前工作相比,我们的方法不需要关于培训动态的任何额外几何或统计假设。然后,通过利用最近建立的理论结果和TDA工具,我们开发了一种高效的算法来估计现代深度神经网络的规模中的博士,并进一步提供可视化工具,以帮助理解深度学习中的概括。我们的实验表明,所提出的方法可以有效地计算网络的内在尺寸,这些设置在各种设置中,这是预测泛化误差的。
translated by 谷歌翻译
适当地表示数据库中的元素,以便可以准确匹配查询是信息检索的核心任务;最近,通过使用各种指标将数据库的图形结构嵌入层次结构的方式中来实现。持久性同源性是一种在拓扑数据分析中常用的工具,能够严格地以其层次结构和连接结构来表征数据库。计算各种嵌入式数据集上的持续同源性表明,一些常用的嵌入式无法保留连接性。我们表明,那些成功保留数据库拓扑的嵌入通过引入两种扩张不变的比较措施来捕获这种效果,尤其是解决了对流形的度量扭曲问题。我们为它们的计算提供了一种算法,该算法大大降低了现有方法的时间复杂性。我们使用这些措施来执行基于拓扑的信息检索的第一个实例,并证明了其在持久同源性的标准瓶颈距离上的性能提高。我们在不同数据品种的数据库中展示了我们的方法,包括文本,视频和医学图像。
translated by 谷歌翻译
In this paper, we investigate the impact of neural networks (NNs) topology on adversarial robustness. Specifically, we study the graph produced when an input traverses all the layers of a NN, and show that such graphs are different for clean and adversarial inputs. We find that graphs from clean inputs are more centralized around highway edges, whereas those from adversaries are more diffuse, leveraging under-optimized edges. Through experiments on a variety of datasets and architectures, we show that these under-optimized edges are a source of adversarial vulnerability and that they can be used to detect adversarial inputs.
translated by 谷歌翻译
在这项研究中,我们检查了工程拓扑特征是否可以区分平衡和不平衡采样方案中的噪声特征不同的随机过程。我们将分类结果与基于统计和原始功能构建的相同分类任务的结果进行比较。我们得出的结论是,在时间序列的分类任务中,建立在工程拓扑功能上的不同机器学习模型比在标准统计和原始功能上构建的拓扑功能始终如一地表现更好。
translated by 谷歌翻译
持久图(PDS)通常以同源性类别的死亡和出生为特征,以提供图形结构的拓扑表示,通常在机器学习任务中有用。先前的作品依靠单个图形签名来构建PD。在本文中,我们探讨了多尺度图标志家族的使用,以增强拓扑特征的鲁棒性。我们提出了一个深度学习体系结构来处理该集合的输入。基准图分类数据集上的实验表明,与使用图神经网络的最新方法相比,我们所提出的架构优于其他基于同源的方法,并实现其他基于同源的方法,并实现竞争性能。此外,我们的方法可以轻松地应用于大尺寸的输入图,因为它不会遭受有限的可伸缩性,这对于图内核方法可能是一个问题。
translated by 谷歌翻译