图形着色是一个经典且关键的NP硬性问题,是分配尽可能不同颜色的连接节点的问题。但是,我们观察到,最新的GNN在图形着色问题中不太成功。我们从两个角度分析原因。首先,大多数GNN都无法将任务概括为同质性的任务,即在其中分配了不同颜色的图形。其次,GNN受网络深度的界定,使其成为一种本地方法,在最大独立集(MIS)问题中已证明这是非最佳选择的。在本文中,我们专注于流行的GNN类的聚合 - 结合GNNS(AC-GNNS)。我们首先将AC-GNN在着色问题中的功能定义为分配节点不同颜色的能力。该定义与以前的定义不同,该定义是基于同质的假设。我们确定了AC-GNN无法区分的节点对。此外,我们表明任何AC-GNN都是本地着色方法,并且任何局部着色方法都是通过稀疏随机图探索局部方法的极限,从而证明了AC-GNN的非典型性财产。然后,我们证明了模型深度与其着色能力之间的正相关。此外,我们讨论了图形的颜色模棱两可,以应对一些实际约束,例如预固化约束。在上面的讨论之后,我们总结了一系列规则一系列规则,这些规则使GNN颜色均等且功能强大。然后,我们提出了满足这些规则的简单AC-GNN变化。我们从经验上验证了我们的理论发现,并证明我们的简单模型在质量和运行时都大大优于最先进的启发式算法。
translated by 谷歌翻译
在本文中,我们提供了一种使用图形神经网络(GNNS)的理论,用于多节点表示学习(我们有兴趣学习一组多个节点的表示)。我们知道GNN旨在学习单节点表示。当我们想学习涉及多个节点的节点集表示时,先前作品中的常见做法是直接将GNN学习的多节点表示与节点集的关节表示。在本文中,我们显示了这种方法的基本限制,即无法捕获节点集中节点之间的依赖性,并且认为直接聚合各个节点表示不会导致多个节点的有效关节表示。然后,我们注意到,以前的一些成功的工作作品用于多节点表示学习,包括密封,距离编码和ID-GNN,所有使用的节点标记。这些方法根据应用GNN之前的与目标节点集的关系,首先标记图中的节点。然后,在标记的图表中获得的节点表示被聚合到节点集表示中。通过调查其内部机制,我们将这些节点标记技术统一到单个和最基本的形式,即标记技巧。我们证明,通过标记技巧,可以获得足够富有表现力的GNN学习最具表现力的节点集表示,因此原则上可以解决节点集的任何联合学习任务。关于一个重要的双节点表示学习任务,链接预测,验证了我们理论的实验。我们的工作建立了使用GNN在节点集上使用GNN进行联合预测任务的理论基础。
translated by 谷歌翻译
图形神经网络(GNNS)是图形处理的广泛连接主义模型。它们对每个节点及其邻居进行迭代消息传递操作,以解决分类/群集任务 - 在某些节点或整个图表上 - 无论其订单如何,都会收集所有此类消息。尽管属于该类的各种模型之间的差异,但大多数基于本地聚合机制和直观地采用相同的计算方案,并直观地,本地计算框架主要负责GNN的表现力。在本文中,我们证明了Weisfeiler - Lehman测试在恰好对应于原始GNN模型上定义的展开等价的图表节点上引起了等效关系。因此,原始GNN的表现力的结果可以扩展到一般GNN,其在​​温和条件下可以证明能够以概率和最高的任何精度近似于朝向展开等价的图表中的任何功能。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are an effective framework for representation learning of graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector of a node is computed by recursively aggregating and transforming representation vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance. * Equal contribution. † Work partially performed while in Tokyo, visiting Prof. Ken-ichi Kawarabayashi.
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译
允许代理商通过沟通共享信息对于解决多代理增强学习中的复杂任务至关重要。在这项工作中,我们考虑了给定通信协议是否可以表达任意政策的问题。通过观察许多现有协议可以看作是图神经网络(GNN)的实例,我们证明了联合动作选择与节点标记的等效性。通过证明其表达能力的标准GNN方法,我们从现有的GNN文献中汲取了限制,并考虑使用以下方式增强剂观察:(1)独特的代理ID和(2)随机噪声。我们提供了有关这些方法如何产生普遍表达性交流的理论分析,并证明它们能够针对相同代理的任意行动集。从经验上讲,这些增强被发现可以改善需要表达性交流的任务的性能,而通常发现最佳通信协议是任务依赖性的。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)被出现为一个强大的神经结构,以学习在监督的端到端时尚中的节点和图表的矢量表示。到目前为止,只有经验评估GNNS - 显示有希望的结果。以下工作从理论的角度调查了GNN,并将它们与1美元 - 二维韦斯美犬 - Leman Graph同构Heuristic(1美元-WL)相关联。我们表明GNNS在区分非同义(子)图表中,GNN具有与1美元-WL相同的表现力。因此,这两种算法也具有相同的缺点。基于此,我们提出了GNN的概括,所谓的$ k $ -dimensional gnns($ k $ -gnns),这可以考虑多个尺度的高阶图结构。这些高阶结构在社交网络和分子图的表征中起重要作用。我们的实验评估证实了我们的理论调查结果,并确认了更高阶信息在图形分类和回归的任务中有用。
translated by 谷歌翻译
本文研究了辍学图神经网络(DAVERGNNS),一种旨在克服标准GNN框架的局限性的新方法。在DAMPGNNS中,我们在输入图上执行多个GNN运行,其中一些节点随机且独立地在这些运行中丢弃。然后,我们将这些运行的结果结合起来获得最终结果。我们证明DAMPGNN可以区分无法通过GNN的消息分隔的各种图形邻域。我们导出了确保可靠分布辍学所需的运行数量的理论界限,我们证明了有关DACKGNNS的表现能力和限制的若干特性。我们在实验上验证了我们对表现力的理论结果。此外,我们表明DOWNNNS在已建立的GNN基准上表现得很竞争。
translated by 谷歌翻译
我们展示了如何使用图形神经网络来解决规范的图形着色问题。我们将颜色框架为多类节点分类问题,并基于统计物理Potts模型利用无监督的培训策略。对其他多级问题(例如社区检测,数据聚类和最低集团封面问题)的概括是简单的。我们提供数值基准结果,并通过端到端的应用程序说明了我们的方法,用于在全面的编码程序框架内实现现实世界调度案例。我们的优化方法在PAR或优于现有求解器上执行,并能够扩展到数百万变量的问题。
translated by 谷歌翻译
Learning node embeddings that capture a node's position within the broader graph structure is crucial for many prediction tasks on graphs. However, existing Graph Neural Network (GNN) architectures have limited power in capturing the position/location of a given node with respect to all other nodes of the graph. Here we propose Position-aware Graph Neural Networks (P-GNNs), a new class of GNNs for computing position-aware node embeddings. P-GNN first samples sets of anchor nodes, computes the distance of a given target node to each anchor-set, and then learns a non-linear distance-weighted aggregation scheme over the anchor-sets. This way P-GNNs can capture positions/locations of nodes with respect to the anchor nodes. P-GNNs have several advantages: they are inductive, scalable, and can incorporate node feature information. We apply P-GNNs to multiple prediction tasks including link prediction and community detection. We show that P-GNNs consistently outperform state of the art GNNs, with up to 66% improvement in terms of the ROC AUC score.Node embedding methods can be categorized into Graph Neural Networks (GNNs) approaches (Scarselli et al., 2009),
translated by 谷歌翻译
图表学习方法的理论分析通常假设输入图的完全观察。由于实践中的可扩展性问题,这种假设可能对处理任何大小的图表都不有用。在这项工作中,我们在部分观察设置中开发了图形分类问题的理论框架(即,子图采样)。在图形限制理论中配备了洞察力,我们提出了一种新的图形分类模型,用于在随机采样的子图和新颖的拓扑上工作,以表征模型的可颂扬性。我们的理论框架在图形上提供了迷你批量学习的理论验证,并导致新的学习 - 理论上的泛化界限以及尺寸概括地,而不是输入的假设。
translated by 谷歌翻译
消息传递神经网络(MPNNs)是格拉夫神经网络(GNN)的一个常见的类型,其中,每个节点的表示是通过聚集从表示其直接邻居(消息)类似于一个星形图案递归计算。 MPNNs的呼吁是有效的,可扩展的,怎么样,曾经它们的表现是由一阶Weisfeiler雷曼同构测试(1-WL)的上界。对此,之前的作品提出在可扩展性的成本极富表现力的模型,有时泛化性能。我们的工作表示这两个政权:我们介绍抬升任何MPNN更加传神,具有可扩展性有限的开销,大大提高了实用性能的总体框架。我们从星星图案一般的子模式(例如,K-egonets)在MPNNs扩展本地聚合实现这一点:在我们的框架中,每个节点表示被计算为周边诱发子的编码,而不是唯一的近邻编码(即一个明星)。我们选择子编码器是一个GNN(主要是MPNNs,考虑到可扩展性)来设计用作一个包装掀任何GNN的总体框架。我们把我们提出的方法GNN-AK(GNN为核心),作为框架用GNNS更换内核类似于卷积神经网络。从理论上讲,我们表明,我们的框架比1和2-WL确实更强大,并且不超过3-WL那么强大。我们还设计子取样策略,可大大降低内存占用和提高速度的同时保持性能。我们的方法将大利润率多家知名图形ML任务新的国家的最先进的性能;具体地,0.08 MAE锌,74.79%和86.887%的准确度上CIFAR10和分别PATTERN。
translated by 谷歌翻译
尽管(消息通话)图形神经网络在图形或一般关系数据上近似置换量等函数方面具有明显的局限性,但更具表现力的高阶图神经网络不会扩展到大图。他们要么在$ k $ - 订单张量子上操作,要么考虑所有$ k $ - 节点子图,这意味着在内存需求中对$ k $的指数依赖,并且不适合图形的稀疏性。通过为图同构问题引入新的启发式方法,我们设计了一类通用的,置换式的图形网络,与以前的体系结构不同,该网络在表达性和可伸缩性之间提供了细粒度的控制,并适应了图的稀疏性。这些体系结构与监督节点和图形级别的标准高阶网络以及回归体系中的标准高阶图网络相比大大减少了计算时间,同时在预测性能方面显着改善了标准图神经网络和图形内核体系结构。
translated by 谷歌翻译
图形神经网络(GNNS)最流行的设计范例是1跳消息传递 - 反复反复从1跳邻居聚集特征。但是,1-HOP消息传递的表达能力受Weisfeiler-Lehman(1-WL)测试的界定。最近,研究人员通过同时从节点的K-Hop邻居汇总信息传递到K-HOP消息。但是,尚无分析K-Hop消息传递的表达能力的工作。在这项工作中,我们从理论上表征了K-Hop消息传递的表达力。具体而言,我们首先正式区分了两种k-hop消息传递的内核,它们在以前的作品中经常被滥用。然后,我们通过表明它比1-Hop消息传递更强大,从而表征了K-Hop消息传递的表现力。尽管具有较高的表达能力,但我们表明K-Hop消息传递仍然无法区分一些简单的常规图。为了进一步增强其表现力,我们引入了KP-GNN框架,该框架通过利用每个跳跃中的外围子图信息来改善K-HOP消息。我们证明,KP-GNN可以区分几乎所有常规图,包括一些距离常规图,这些图无法通过以前的距离编码方法来区分。实验结果验证了KP-GNN的表达能力和有效性。 KP-GNN在所有基准数据集中都取得了竞争成果。
translated by 谷歌翻译
链接预测是图神经网络(GNN)的重要应用。链接预测的大多数现有GNN基于一维Weisfeiler-Lehman(1-WL)测试。 1-wl-gnn首先通过迭代的相邻节点特征来计算中心,然后通过汇总成对节点表示来获得链接表示。正如先前的作品所指出的那样,这两步过程会导致较低的区分功能,因为自然而然地学习节点级表示而不是链接级别。在本文中,我们研究了一种完全不同的方法,该方法可以基于\ textit {二维WEISFEILER-LEHMAN(2-WL)测试直接获得节点对(链接)表示。 2-WL测试直接使用链接(2个小说)作为消息传递单元而不是节点,因此可以直接获得链接表示。我们理论上分析了2-WL测试的表达能力以区分非晶状体链接,并证明其优越的链接与1-WL相比。基于不同的2-WL变体,我们提出了一系列用于链路预测的新型2-WL-GNN模型。在广泛的现实数据集上进行的实验证明了它们对最先进的基线的竞争性能以及优于普通1-WL-GNN的优势。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是图形同构的着名启发式问题,它被成为具有图形和关系数据的(监督)机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法使用。我们讨论了理论背景,展示了如何将其用于监督的图形和节点分类,讨论最近的扩展,以及其与神经结构的连接。此外,我们概述了当前的应用和未来方向,以刺激研究。
translated by 谷歌翻译
图表神经网络(GNNS)最近提出了用于处理图形结构数据的神经网络结构。由于他们所采用的邻国聚合策略,现有的GNNS专注于捕获节点级信息并忽略高级信息。因此,现有的GNN受到本地置换不变性(LPI)问题引起的代表性限制。为了克服这些限制并丰富GNN捕获的特征,我们提出了一种新的GNN框架,称为两级GNN(TL-GNN)。这与节点级信息合并子图级信息。此外,我们提供了对LPI问题的数学分析,这表明子图级信息有利于克服与LPI相关的问题。还提出了一种基于动态编程算法的子图计数方法,并且该具有时间复杂度是O(n ^ 3),n是图的节点的数量。实验表明,TL-GNN优于现有的GNN,实现了最先进的性能。
translated by 谷歌翻译
图形神经网络(GNN)已被密切应用于各种基于图的应用程序。尽管他们成功了,但手动设计行为良好的GNN需要巨大的人类专业知识。因此,发现潜在的最佳数据特异性GNN体系结构效率低下。本文提出了DFG-NAS,这是一种新的神经体系结构搜索(NAS)方法,可自动搜索非常深入且灵活的GNN体系结构。与大多数专注于微构造的方法不同,DFG-NAS突出了另一个设计级别:搜索有关原子传播的宏观构造(\ TextBf {\ Textbf {\ Texttt {p}}})和转换(\ texttt {\ textttt {\ texttt {\ texttt {\ texttt { T}})的操作被整合并组织到GNN中。为此,DFG-NAS为\ textbf {\ texttt {p-t}}}的排列和组合提出了一个新颖的搜索空间,该搜索空间是基于消息传播的散布,定义了四个自定义设计的宏观架构突变,并采用了进化性algorithm to to the Evolutionary algorithm进行有效的搜索。关于四个节点分类任务的实证研究表明,DFG-NAS优于最先进的手动设计和GNN的NAS方法。
translated by 谷歌翻译
图形神经网络(GNNS)在学习归属图中显示了很大的力量。但是,GNNS从源节点利用遥控器的信息仍然是一个挑战。此外,常规GNN要求将图形属性作为输入,因此它们无法应用于纯图。在论文中,我们提出了名为G-GNNS(GNN的全局信息)的新模型来解决上述限制。首先,通过无监督的预训练获得每个节点的全局结构和属性特征,其保留与节点相关联的全局信息。然后,使用全局功能和原始网络属性,我们提出了一个并行GNN的并行框架来了解这些功能的不同方面。所提出的学习方法可以应用于普通图和归属图。广泛的实验表明,G-GNNS可以在三个标准评估图上优于其他最先进的模型。特别是,我们的方法在学习归属图表时建立了Cora(84.31 \%)和PubMed(80.95 \%)的新基准记录。
translated by 谷歌翻译