本文研究了辍学图神经网络(DAVERGNNS),一种旨在克服标准GNN框架的局限性的新方法。在DAMPGNNS中,我们在输入图上执行多个GNN运行,其中一些节点随机且独立地在这些运行中丢弃。然后,我们将这些运行的结果结合起来获得最终结果。我们证明DAMPGNN可以区分无法通过GNN的消息分隔的各种图形邻域。我们导出了确保可靠分布辍学所需的运行数量的理论界限,我们证明了有关DACKGNNS的表现能力和限制的若干特性。我们在实验上验证了我们对表现力的理论结果。此外,我们表明DOWNNNS在已建立的GNN基准上表现得很竞争。
translated by 谷歌翻译
我们提出了一个新的图形神经网络,我们称为AgentNet,该网络专为图形级任务而设计。 AgentNet的灵感来自子宫性算法,具有独立于图形大小的计算复杂性。代理Net的体系结构从根本上与已知图神经网络的体系结构不同。在AgentNet中,一些受过训练的\ textit {神经代理}智能地行走图,然后共同决定输出。我们提供了对AgentNet的广泛理论分析:我们表明,代理可以学会系统地探索其邻居,并且AgentNet可以区分某些甚至3-WL无法区分的结构。此外,AgentNet能够将任何两个图形分开,这些图在子图方面完全不同。我们通过在难以辨认的图和现实图形分类任务上进行合成实验来确认这些理论结果。在这两种情况下,我们不仅与标准GNN相比,而且与计算更昂贵的GNN扩展相比。
translated by 谷歌翻译
大多数图形神经网络(GNNS)无法区分某些图形或图中的某些节点。这使得无法解决某些分类任务。但是,在这些模型中添加其他节点功能可以解决此问题。我们介绍了几种这样的增强,包括(i)位置节点嵌入,(ii)规范节点ID和(iii)随机特征。这些扩展是由理论结果激励的,并通过对合成子图检测任务进行广泛测试来证实。我们发现位置嵌入在这些任务中的其他扩展大大超过了其他扩展。此外,位置嵌入具有更好的样品效率,在不同的图形分布上表现良好,甚至超过了地面真实节点位置。最后,我们表明,不同的增强功能在既定的GNN基准中都具有竞争力,并建议何时使用它们。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
Most graph neural network models rely on a particular message passing paradigm, where the idea is to iteratively propagate node representations of a graph to each node in the direct neighborhood. While very prominent, this paradigm leads to information propagation bottlenecks, as information is repeatedly compressed at intermediary node representations, which causes loss of information, making it practically impossible to gather meaningful signals from distant nodes. To address this issue, we propose shortest path message passing neural networks, where the node representations of a graph are propagated to each node in the shortest path neighborhoods. In this setting, nodes can directly communicate between each other even if they are not neighbors, breaking the information bottleneck and hence leading to more adequately learned representations. Theoretically, our framework generalizes message passing neural networks, resulting in provably more expressive models, and we show that some recent state-of-the-art models are special instances of this framework. Empirically, we verify the capacity of a basic model of this framework on dedicated synthetic experiments, and on real-world graph classification and regression benchmarks, and obtain state-of-the-art results.
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are an effective framework for representation learning of graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector of a node is computed by recursively aggregating and transforming representation vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance. * Equal contribution. † Work partially performed while in Tokyo, visiting Prof. Ken-ichi Kawarabayashi.
translated by 谷歌翻译
图形神经网络(GNNS)的表现力量受到限制,具有远程交互的斗争,缺乏模拟高阶结构的原则性方法。这些问题可以归因于计算图表和输入图结构之间的强耦合。最近提出的消息通过单独的网络通过执行图形的Clique复合物的消息来自然地解耦这些元素。然而,这些模型可能受到单纯复合物(SCS)的刚性组合结构的严重限制。在这项工作中,我们将最近的基于常规细胞复合物的理论结果扩展到常规细胞复合物,灵活地满满SCS和图表的拓扑物体。我们表明,该概括提供了一组强大的图表“提升”转换,每个图形是导致唯一的分层消息传递过程。我们集体呼叫CW Networks(CWNS)的结果方法比WL测试更强大,而不是比3 WL测试更强大。特别是,当应用于分子图问题时,我们证明了一种基于环的一个这样的方案的有效性。所提出的架构从可提供的较大的表达效益于常用的GNN,高阶信号的原则建模以及压缩节点之间的距离。我们展示了我们的模型在各种分子数据集上实现了最先进的结果。
translated by 谷歌翻译
图形神经网络(GNNS)最流行的设计范例是1跳消息传递 - 反复反复从1跳邻居聚集特征。但是,1-HOP消息传递的表达能力受Weisfeiler-Lehman(1-WL)测试的界定。最近,研究人员通过同时从节点的K-Hop邻居汇总信息传递到K-HOP消息。但是,尚无分析K-Hop消息传递的表达能力的工作。在这项工作中,我们从理论上表征了K-Hop消息传递的表达力。具体而言,我们首先正式区分了两种k-hop消息传递的内核,它们在以前的作品中经常被滥用。然后,我们通过表明它比1-Hop消息传递更强大,从而表征了K-Hop消息传递的表现力。尽管具有较高的表达能力,但我们表明K-Hop消息传递仍然无法区分一些简单的常规图。为了进一步增强其表现力,我们引入了KP-GNN框架,该框架通过利用每个跳跃中的外围子图信息来改善K-HOP消息。我们证明,KP-GNN可以区分几乎所有常规图,包括一些距离常规图,这些图无法通过以前的距离编码方法来区分。实验结果验证了KP-GNN的表达能力和有效性。 KP-GNN在所有基准数据集中都取得了竞争成果。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
尽管(消息通话)图形神经网络在图形或一般关系数据上近似置换量等函数方面具有明显的局限性,但更具表现力的高阶图神经网络不会扩展到大图。他们要么在$ k $ - 订单张量子上操作,要么考虑所有$ k $ - 节点子图,这意味着在内存需求中对$ k $的指数依赖,并且不适合图形的稀疏性。通过为图同构问题引入新的启发式方法,我们设计了一类通用的,置换式的图形网络,与以前的体系结构不同,该网络在表达性和可伸缩性之间提供了细粒度的控制,并适应了图的稀疏性。这些体系结构与监督节点和图形级别的标准高阶网络以及回归体系中的标准高阶图网络相比大大减少了计算时间,同时在预测性能方面显着改善了标准图神经网络和图形内核体系结构。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
消息传递神经网络(MPNNs)是格拉夫神经网络(GNN)的一个常见的类型,其中,每个节点的表示是通过聚集从表示其直接邻居(消息)类似于一个星形图案递归计算。 MPNNs的呼吁是有效的,可扩展的,怎么样,曾经它们的表现是由一阶Weisfeiler雷曼同构测试(1-WL)的上界。对此,之前的作品提出在可扩展性的成本极富表现力的模型,有时泛化性能。我们的工作表示这两个政权:我们介绍抬升任何MPNN更加传神,具有可扩展性有限的开销,大大提高了实用性能的总体框架。我们从星星图案一般的子模式(例如,K-egonets)在MPNNs扩展本地聚合实现这一点:在我们的框架中,每个节点表示被计算为周边诱发子的编码,而不是唯一的近邻编码(即一个明星)。我们选择子编码器是一个GNN(主要是MPNNs,考虑到可扩展性)来设计用作一个包装掀任何GNN的总体框架。我们把我们提出的方法GNN-AK(GNN为核心),作为框架用GNNS更换内核类似于卷积神经网络。从理论上讲,我们表明,我们的框架比1和2-WL确实更强大,并且不超过3-WL那么强大。我们还设计子取样策略,可大大降低内存占用和提高速度的同时保持性能。我们的方法将大利润率多家知名图形ML任务新的国家的最先进的性能;具体地,0.08 MAE锌,74.79%和86.887%的准确度上CIFAR10和分别PATTERN。
translated by 谷歌翻译
我们研究了图形表示学习的量子电路,并提出了等级的量子图电路(EQGCS),作为一类参数化量子电路,具有强大的关系感应偏压,用于学习图形结构数据。概念上,EQGCS作为量子图表表示学习的统一框架,允许我们定义几个有趣的子类,其中包含了现有的提案。就代表性权力而言,我们证明了感兴趣的子类是界限图域中的函数的普遍近似器,并提供实验证据。我们对量子图机学习方法的理论透视开启了许多方向以进行进一步的工作,可能导致具有超出古典方法的能力的模型。
translated by 谷歌翻译
图形神经网络(GNNS)具有有限的表现力量,无法正确代表许多图形类。虽然更具表现力的图表表示学习(GRL)替代方案可以区分其中一些类,但它们明显难以实现,可能不会很好地扩展,并且尚未显示在现实世界任务中优于经过良好调整的GNN。因此,设计简单,可扩展和表现力的GRL架构,也实现了现实世界的改进仍然是一个开放的挑战。在这项工作中,我们展示了图形重建的程度 - 从其子图重建图形 - 可以减轻GRL架构目前面临的理论和实际问题。首先,我们利用图形重建来构建两个新的表达图表表示。其次,我们展示了图形重建如何提升任何GNN架构的表现力,同时是一个(可证明的)强大的归纳偏见,用于侵略性的侵略性。凭经验,我们展示了重建如何提高GNN的表现力 - 同时保持其与顶点的排列的不变性 - 通过解决原始GNN的七个图形属性任务而无法解决。此外,我们展示了如何在九世界基准数据集中提升最先进的GNN性能。
translated by 谷歌翻译
Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the 'combine' function of size polynomial or even exponential in the number of graph nodes $n$, as well as feature vectors of length linear in $n$. We present an improved simulation of the WL test on GNNs with \emph{exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only a polylogarithmic number of parameters in $n$, and the feature vectors exchanged by the nodes of GNN consists of only $O(\log n)$ bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.
translated by 谷歌翻译
Identifying similar network structures is key to capture graph isomorphisms and learn representations that exploit structural information encoded in graph data. This work shows that ego-networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity than the Weisfeiler-Lehman (1-WL) test. We introduce IGEL, a preprocessing step to produce features that augment node representations by encoding ego-networks into sparse vectors that enrich Message Passing (MP) Graph Neural Networks (GNNs) beyond 1-WL expressivity. We describe formally the relation between IGEL and 1-WL, and characterize its expressive power and limitations. Experiments show that IGEL matches the empirical expressivity of state-of-the-art methods on isomorphism detection while improving performance on seven GNN architectures.
translated by 谷歌翻译
最近出现了许多子图增强图神经网络(GNN),可证明增强了标准(消息通话)GNN的表达能力。但是,对这些方法之间的相互关系和weisfeiler层次结构的关系有限。此外,当前的方法要么使用给定尺寸的所有子图,要随机均匀地对其进行采样,或者使用手工制作的启发式方法,而不是学习以数据驱动的方式选择子图。在这里,我们提供了一种统一的方法来研究此类体系结构,通过引入理论框架并扩展了亚图增强GNN的已知表达结果。具体而言,我们表明,增加子图的大小总是会增加表达能力,并通过将它们与已建立的$ k \ text { - } \ Mathsf {Wl} $ hierArchy联系起来,从而更好地理解其局限性。此外,我们还使用最近通过复杂的离散概率分布进行反向传播的方法探索了学习对子图进行采样的不同方法。从经验上讲,我们研究了不同子图增强的GNN的预测性能,表明我们的数据驱动体系结构与非DATA驱动的亚图增强图形神经网络相比,在标准基准数据集上提高了对标准基准数据集的预测准确性,同时减少了计算时间。
translated by 谷歌翻译
在这项工作中,我们开发了一种新的方法,名为局部排列的图形神经网络,它为建立在本地节点邻域,通过子图形的构建图形神经网络的框架,同时使用置换等值更新功能。消息传递神经网络的消息被认为是有效应功率的限制,并且最近过度的方法缺乏可扩展性或需要将结构信息被编码为特征空间。这里呈现的一般框架克服了通过通过受限制表示在子图上操作的与全局排列等值相关的可扩展性问题。此外,我们证明了通过使用限制的陈述没有丧失表情。此外,所提出的框架仅需要选择$ k $-hops,用于创建用于为每层使用的子图和选择的表示空间,这使得该方法在一系列基于图形的域中可以容易地适用。我们通过实验验证了一系列图形基准分类任务的方法,在所有基准上展示了最先进的结果或非常竞争力的结果。此外,我们证明使用本地更新函数的使用在全球方法上提供了GPU存储器的显着改进。
translated by 谷歌翻译
在本文中,我们提供了一种使用图形神经网络(GNNS)的理论,用于多节点表示学习(我们有兴趣学习一组多个节点的表示)。我们知道GNN旨在学习单节点表示。当我们想学习涉及多个节点的节点集表示时,先前作品中的常见做法是直接将GNN学习的多节点表示与节点集的关节表示。在本文中,我们显示了这种方法的基本限制,即无法捕获节点集中节点之间的依赖性,并且认为直接聚合各个节点表示不会导致多个节点的有效关节表示。然后,我们注意到,以前的一些成功的工作作品用于多节点表示学习,包括密封,距离编码和ID-GNN,所有使用的节点标记。这些方法根据应用GNN之前的与目标节点集的关系,首先标记图中的节点。然后,在标记的图表中获得的节点表示被聚合到节点集表示中。通过调查其内部机制,我们将这些节点标记技术统一到单个和最基本的形式,即标记技巧。我们证明,通过标记技巧,可以获得足够富有表现力的GNN学习最具表现力的节点集表示,因此原则上可以解决节点集的任何联合学习任务。关于一个重要的双节点表示学习任务,链接预测,验证了我们理论的实验。我们的工作建立了使用GNN在节点集上使用GNN进行联合预测任务的理论基础。
translated by 谷歌翻译