零射击学习(ZSL)的目前方法努力学习能够捕获复杂相关性的易于化语义知识。通过\ EMPH {螺旋课程},这增强通过重新访问知识学习过程的启发,我们提出螺旋学习的一种形式,其重访基于属性组的序列(视觉表示例如,\ EMPH {颜色}和\ EMPH的组合组{形状})。螺旋学习旨在学习广义本地相关性,使模型能够逐步增强全球学习,从而了解复杂的相关性。我们的实现基于2级\ emph {加强自修订(RSR)}框架:\ emph {preview}和\ emph {review}。 RSR首先预览视觉信息以虚弱的方式构建不同的属性组。然后,它基于属性组螺旋地学习精细的本地,并使用本地来修改全局语义相关性。我们的框架在零射频和广义零点设置的四个基准数据集中占据了最先进的算法,这证明了螺旋学习在学习易于和复杂的相关性方面的有效性。我们还进行了广泛的分析,以显示属性组和加强决策过程可以捕获互补语义信息以改善预测和援助解释性。
translated by 谷歌翻译
零拍摄学习(ZSL)旨在通过语义相关转移观察到的课程的学习知识。有希望的策略是学习一个全球本地代表,将全球信息纳入额外的地方(即输入的小部分/地区)。但是,现有方法根据显式功能发现本地,而无需挖掘区域内部属性和关系。在这项工作中,我们提出了一种新的熵引导的增强部分卷积网络(ERPCNET),其基于没有人为注释区域的语义相关性和视觉相关性地提取和聚集在地区。 ERPCNET使用加强部分卷积和熵指导;它不仅在动态发现全球合作的地方,而且还可以更快地收敛于政策梯度优化。我们通过在ZSL和四个基准数据集中的ZSL和广义零射击学习(GZSL)设置下,通过比较来展示ERPCNET的性能。我们还显示ERPCNet是时间高效,可通过可视化分析来解释。
translated by 谷歌翻译
零拍摄学习(ZSL)旨在将知识从看见课程转移到语义相关的看不见的看不见的类,这在训练期间不存在。 ZSL的有希望的策略是在语义侧信息中综合未经调节的视野类的视觉特征,并结合元学习,以消除模型对所看到的课程的固有偏差。虽然现有的元生成方法追求跨任务分布的共同模型,但我们的目标是构建适应任务特征的生成网络。为此,我们提出了一个属性调制的生成元模型,用于零射击学习(Amaz)。我们的模型包括属性感知调制网络,属性增强生成网络和属性加权分类器。给定看不见的类,调制网络通过应用特定任务的变换自适应地调制发电机,使得生成网络可以适应高度多样化的任务。加权分类器利用数据质量来增强培训过程,进一步提高模型性能。我们对四种广泛使用的基准测试的实证评估表明,Amaz优先效仿最先进的方法在ZSL和广义ZSL设置中,展示了我们方法的优越性。我们对零拍摄图像检索任务的实验表明了Amaz的合成描绘真实视觉特征的情况的能力。
translated by 谷歌翻译
零拍分类问题的大多数现有算法通常依赖于类别之间基于属性的语义关系,以实现新型类别的分类而不观察其任何实例。但是,训练零拍分类模型仍然需要训练数据集中的每个类(甚至是实例)的属性标记,这也是昂贵的。为此,在本文中,我们提出了一个新的问题场景:“我们是否能够为新颖的属性探测器/分类器获得零射击学习,并使用它们自动注释数据集以进行标记效率?”基本上,仅给予一小组探测器,这些探测器都学会了识别一些手动注释的属性(即,所见属性),我们的目标是以零射学学习方式综合新颖属性的探测器。我们所提出的方法,零拍摄的属性(ZSLA),这是我们最好的知识中的第一个,通过应用SET操作首先将所看到的属性分解为基本属性,然后重新组合地解决这一新的研究问题。这些基本属性进入了新颖的属性。进行广泛的实验以验证我们合成探测器的能力,以便准确地捕获新颖性的语义,并与其他基线方法相比,在检测和定位方面表现出优越的性能。此外,在CALTECH-UCSD鸟类-200-2011 DataSet上使用仅32个属性,我们所提出的方法能够合成其他207个新颖的属性,而在由我们合成重新注释的数据集上培训的各种广义零拍分类算法属性探测器能够提供可比性的性能与手动地理注释有关的那些。
translated by 谷歌翻译
The task of Compositional Zero-Shot Learning (CZSL) is to recognize images of novel state-object compositions that are absent during the training stage. Previous methods of learning compositional embedding have shown effectiveness in closed-world CZSL. However, in Open-World CZSL (OW-CZSL), their performance tends to degrade significantly due to the large cardinality of possible compositions. Some recent works separately predict simple primitives (i.e., states and objects) to reduce cardinality. However, they consider simple primitives as independent probability distributions, ignoring the heavy dependence between states, objects, and compositions. In this paper, we model the dependence of compositions via feasibility and contextuality. Feasibility-dependence refers to the unequal feasibility relations between simple primitives, e.g., \textit{hairy} is more feasible with \textit{cat} than with \textit{building} in the real world. Contextuality-dependence represents the contextual variance in images, e.g., \textit{cat} shows diverse appearances under the state of \textit{dry} and \textit{wet}. We design Semantic Attention (SA) and generative Knowledge Disentanglement (KD) to learn the dependence of feasibility and contextuality, respectively. SA captures semantics in compositions to alleviate impossible predictions, driven by the visual similarity between simple primitives. KD disentangles images into unbiased feature representations, easing contextual bias in predictions. Moreover, we complement the current compositional probability model with feasibility and contextuality in a compatible format. Finally, we conduct comprehensive experiments to analyze and validate the superior or competitive performance of our model, Semantic Attention and knowledge Disentanglement guided Simple Primitives (SAD-SP), on three widely-used benchmark OW-CZSL datasets.
translated by 谷歌翻译
零拍学习(ZSL)旨在将分类能力转移到看不见的课程。最近的方法证明,泛化和专业化是在ZSL中实现良好性能的两个基本能力。然而,它们只关注一个能力,导致模型,这些模型太过普遍,具有劣化的分类能力或专注于概括到看不见的课程。在本文中,我们提出了一种端到端网络,具有平衡的泛化和专业化能力,称为BGSNet,利用两种能力,并在实例和数据集级别平衡它们。具体而言,BGSNet由两个分支组成:泛化网络(GNET),它应用epiSodic元学习学习广义知识,以及平衡专业化网络(BSNet),它采用多个细心提取器来提取歧视特征并满足实例级别平衡。一种新颖的自调整分集损失旨在优化具有较少冗余和更多样性的BSNet。我们进一步提出了可分辨性的数据集级别平衡并更新线性退火调度中的权重,以模拟网络修剪,从而以低成本获得BSNet的最佳结构,并且实现了数据集级平衡。四个基准数据集的实验展示了我们模型的效果。足够的组分消融证明了整合泛化和专业能力的必要性。
translated by 谷歌翻译
零射门学习(ZSL)旨在通过将语义知识从看见课程转移到看不见者来识别新颖的课程。从不同类别之间共享的属性描述中学到的语义知识,该属性描述是用于本地化代表歧视区域特征的对象属性的强子指数,从而实现了显着的视觉语义交互。尽管基于注意的模型已经尝试学习单个图像中的这种区域特征,但是通常忽略视觉特征的可转换性和辨别性属性定位。在本文中,我们提出了一个属性引导的变压器网络,称为Transzero,以改进视觉特征,并在ZSL中鉴定鉴别的视觉嵌入表示。具体而言,Transzero采用特征增强编码器来缓解想象集和ZSL基准之间的交叉数据集偏压,并通过减少区域特征之间的缠结的相对几何关系来提高视觉特征的可转换性。为了学习地区增强的可视功能,Transzero使用视觉语义解码器来在语义属性信息的指导下本地化与给定图像中的每个属性最相关的图像区域。然后,用于在视觉语义嵌入网络中进行有效的视觉语义交互来实现局部增强的视觉特征和语义向量。广泛的实验表明,Transzero在三个ZSL基准上实现了新的最新状态。该代码可用于:\ url {https://github.com/shiming-chen/transzero}。
translated by 谷歌翻译
零射击学习(ZSL)通过将语义知识转移到看不见者的语义知识来解决新的类识别问题。通过单独使用单向关注,现有的基于关注的模型在单个图像中努力学习劣势区域特征,这忽略了视觉特征的可转换性和辨别属性定位。在本文中,我们提出了一个跨属性引导的变换器网络,称为Transzero ++,以改进可视化功能,并学习精确的属性本地化,用于ZSL中的语义增强的可视嵌入表示。 Transzero ++由Attribute $ \ LightArrow $ Visual Transformer子网(AVT)和Visual $ \ LightArrow $属性变压器子网(增值税)组成。具体而言,AVT首先采用功能增强编码器来缓解交叉数据集问题,并通过减少区域特征之间的缠绕的相对几何关系来提高视觉特征的可转换性。然后,使用属性$ \ lightArrow $可视解码器来本地化与基于属性的可视特征表示的给定图像中的每个属性最相关的图像区域。类似地,VAT使用类似的功能增强编码器来改进视觉功能,这些功能进一步应用于Visual $ \ lightarrow $属性解码器,以学习基于Visual-基的属性功能。通过进一步引入语义协作损失,两个属性引导的变压器通过语义协作学习互相教导学习语义增强的视觉嵌入。广泛的实验表明,Transzero ++在三个挑战ZSL基准上实现了新的最先进的结果。该代码可用于:\ url {https://github.com/shiming-chen/transzero_pp}。
translated by 谷歌翻译
广义的零射击学习(GZSL)旨在通过将语义知识从看见的类别转移到看不见的阶级来识别所见类和看不见的类别的图像。这是一个有希望的解决方案,可以利用生成模型的优势,以根据从所见类中学到的知识来幻觉现实的看不见的样本。但是,由于产生的变化,大多数现有方法的合成样本可能从看不见的数据的实际分布中偏离。为了解决这个问题,我们提出了一个基于流动的生成框架,该框架由多种条件仿射耦合层组成,用于学习看不见的数据生成。具体而言,我们发现并解决了触发产生转移的三个潜在问题,即语义不一致,方差崩溃和结构障碍。首先,为了增强生成样品中语义信息的反射,我们将语义信息明确嵌入到每个条件仿射耦合层中的转换中。其次,为了恢复真正看不见的特征的固有差异,我们引入了一种边界样本挖掘策略,具有熵最大化,以发现语义原型的更困难的视觉变体,并在此调整分类器的决策边界。第三,提出了一种相对定位策略来修改属性嵌入,引导它们充分保留类间的几何结构,并进一步避免语义空间中的结构障碍。四个GZSL基准数据集的广泛实验结果表明,GSMFlow在GZSL上实现了最先进的性能。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
广义零射击学习(GZSL)旨在培训一个模型,以在某些输出类别在监督学习过程中未知的情况下对数据样本进行分类。为了解决这一具有挑战性的任务,GZSL利用可见的(源)和看不见的(目标)类的语义信息来弥合所见类和看不见的类之间的差距。自引入以来,已经制定了许多GZSL模型。在这篇评论论文中,我们介绍了有关GZSL的全面评论。首先,我们提供了GZSL的概述,包括问题和挑战。然后,我们为GZSL方法介绍了分层分类,并讨论了每个类别中的代表性方法。此外,我们讨论了GZSL的可用基准数据集和应用程序,以及有关研究差距和未来研究方向的讨论。
translated by 谷歌翻译
零拍学习(ZSL)旨在通过利用所见类和看不见的类之间共享的语义描述来识别看不见的类。当前的方法表明,通过将语义嵌入将视觉空间投射到视觉空间中是类原型,从而有效地学习视觉语义对齐是有效的。但是,这样的投影函数仅与可见的类有关。当应用于看不见的类时,原型通常由于域移位而次优。在本文中,我们建议通过称为LPL的占位符学习原型,以消除看到和看不见的阶级之间的域转移。具体来说,我们将看到的课程结合在一起,以使新课程成为视觉和语义空间中看不见的班级的占位符。占位持有人放置在看到的班级之间,鼓励人们高度分散所见类的原型。插入良好的看不见的空间也可以保留更多的空间。从经验上讲,分离良好的原型有助于抵消由域转移引起的视觉声音错位。此外,我们利用一种新颖的面向语义的微调来保证占位符的语义可靠性。在五个基准数据集上进行的广泛实验证明了LPL在最新方法上的显着性能提高。代码可在https://github.com/zaiquanyang/lpl上找到。
translated by 谷歌翻译
Inspired by strategies like Active Learning, it is intuitive that intelligently selecting the training classes from a dataset for Zero-Shot Learning (ZSL) can improve the performance of existing ZSL methods. In this work, we propose a framework called Diverse and Rare Class Identifier (DiRaC-I) which, given an attribute-based dataset, can intelligently yield the most suitable "seen classes" for training ZSL models. DiRaC-I has two main goals - constructing a diversified set of seed classes, followed by a visual-semantic mining algorithm initialized by these seed classes that acquires the classes capturing both diversity and rarity in the object domain adequately. These classes can then be used as "seen classes" to train ZSL models for image classification. We adopt a real-world scenario where novel object classes are available to neither DiRaC-I nor the ZSL models during training and conducted extensive experiments on two benchmark data sets for zero-shot image classification - CUB and SUN. Our results demonstrate DiRaC-I helps ZSL models to achieve significant classification accuracy improvements.
translated by 谷歌翻译
基于世代的方法已在零拍学习研究中吸引了大部分最近的关注。在本文中,我们试图解构生成器分类器框架以指导其改进和扩展。我们首先通过将发电机学习的实例级分布与高斯分布交替进行分析。然后,我们通过分解分类器梯度来揭示生成器在分类器训练中学习的类级分布和实例级分布的作用。我们最终以从生成器和分类器的解构(即(i)ZSL Generator的键是属性通用化的关键)来改进生成器分类器框架的指南; (ii)分类器学习强调伪伪样本对训练过程中可见类之间的决策界限的影响,并减少可见的未见偏见。我们根据准则提出了一种简单的方法。没有复杂的设计,该提出的方法在四个公共ZSL数据集上优于最新技术,这证明了拟议准则的有效性。在用属性到视觉中心单映射模型代替生成模型时,提出的方法仍然有效,证明其强大的可传递性。接受后,代码将在接受后公开。
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译
专注于歧视性零射击学习,在这项工作中,我们介绍了一种新的机制,在培训一组课程期间动态增强以产生额外的虚构课程。这些虚构的类在培训集中出现的属性相关性期间对模型进行固定的模型的趋势减少,但不会出现在新公开的课程中。所提出的模型在零射击学习框架的两种配方中进行测试;即,广义零射击学习(GZSL)和古典零射击学习(CZSL)。我们的模型可以提高CUB数据集的最先进的性能,并在其他常见数据集,AWA2和Sun上达到可比结果。我们调查我们方法的优点和弱点,包括在训练端到端零拍模型时灾难性忘记的影响。
translated by 谷歌翻译
最近深入生成模型的进步概述了零拍学习(ZSL)领域的有希望的角度。大多数生成ZSL方法使用类别语义属性加上高斯噪声来生成可视化功能。在生成看不见的样本后,这家族方法有效地将ZSL问题转变为监督分类方案。但是,现有模型使用单个语义属性,其中包含类别的完整属性信息。生成的数据还携带完整的属性信息,但实际上,视觉样本通常具有有限的属性。因此,来自属性的生成数据可能具有不完整的语义。基于这一事实,我们提出了一种新颖的框架来通过综合各种功能来提升ZSL。此方法使用增强语义属性来培训生成模型,以便模拟视觉功能的真实分布。我们在四个基准数据集中评估提出的模型,观察到最先进的显着性能改善。
translated by 谷歌翻译
零击学习(ZSL)旨在预测看不见的课程,其样本在培训期间从未出现过,经常利用其他语义信息(又称侧信息)来桥接培训(见过)课程和看不见的课程。用于零拍图像分类的最有效且最广泛使用的语义信息之一是属性,是类级视觉特征的注释。但是,由于细粒度的注释短缺,属性不平衡和同时出现,当前方法通常无法区分图像之间的那些微妙的视觉区别,从而限制了它们的性能。在本文中,我们提出了一种名为Duet的基于变压器的端到端ZSL方法,该方法通过自我监督的多模式学习范式从审前的语言模型(PLM)中整合了潜在的语义知识。具体而言,我们(1)开发了一个跨模式的语义接地网络,以研究模型从图像中解开语义属性的能力,(2)应用了属性级的对比度学习策略,以进一步增强模型对细粒视觉特征的歧视反对属性的共同出现和不平衡,(3)提出了一个多任务学习策略,用于考虑多模型目标。通过对三个标准ZSL基准测试和配备ZSL基准的知识图进行广泛的实验,我们发现二重奏通常可以实现最新的性能,其组件是有效的,并且其预测是可以解释的。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
很少有学习的学习(FSL)旨在学习一个可以轻松适应新颖课程的分类器,只有几个标签的示例,限制数据使这项任务挑战深度学习。基于量子指标的方法已实现了有希望的表现基于图像级的功能。但是,这些全球特征忽略了丰富的本地和结构信息,这些信息在可见的和看不见的类之间都是可以转移和一致的。认知科学的某些研究认为,人类可以识别出具有学识渊博的新颖类。我们希望挖掘出来可以从基础类别转移和判别性表示,并采用它们以识别新的课程。建立情节训练机制,我们提出了一个原始的采矿和推理网络(PMRN),以端到端的方式学习原始感知的表示,以进行度量。基于基于FSL模型。我们首先添加自学辅助任务,迫使功能提取器学习与原始词相对应的电视模式。为了进一步挖掘并产生可转移的原始感知表示形式,我们设计了一个自适应通道组(ACG)模块,以通过增强信息通道图的同时抑制无用的通道图,从而从对象嵌入中合成一组视觉原语。基于学到的原始功能,提出了一个语义相关推理(SCR)模块来捕获它们之间的内部关系。在本文中,我们了解原始词的特定于任务的重要性,并基于特定于任务的注意力功能进行原始级别的度量。广泛的实验表明,我们的方法在六个标准基准下实现了最先进的结果。
translated by 谷歌翻译