零拍学习(ZSL)旨在通过利用所见类和看不见的类之间共享的语义描述来识别看不见的类。当前的方法表明,通过将语义嵌入将视觉空间投射到视觉空间中是类原型,从而有效地学习视觉语义对齐是有效的。但是,这样的投影函数仅与可见的类有关。当应用于看不见的类时,原型通常由于域移位而次优。在本文中,我们建议通过称为LPL的占位符学习原型,以消除看到和看不见的阶级之间的域转移。具体来说,我们将看到的课程结合在一起,以使新课程成为视觉和语义空间中看不见的班级的占位符。占位持有人放置在看到的班级之间,鼓励人们高度分散所见类的原型。插入良好的看不见的空间也可以保留更多的空间。从经验上讲,分离良好的原型有助于抵消由域转移引起的视觉声音错位。此外,我们利用一种新颖的面向语义的微调来保证占位符的语义可靠性。在五个基准数据集上进行的广泛实验证明了LPL在最新方法上的显着性能提高。代码可在https://github.com/zaiquanyang/lpl上找到。
translated by 谷歌翻译
零拍学习(ZSL)旨在识别培训时间没有可视化样本的类。要解决此问题,可以依赖每个类的语义描述。典型的ZSL模型学习所看到的类和相应的语义描述的视觉样本之间的映射,以便在测试时间的看不见的类上对此进行操作。最先进的方法依赖于从类的原型合成视觉特征的生成模型,从而可以以监督方式学习分类器。但是,这些方法通常偏向于所看到的类,其视觉实例是唯一可以与给定类原型匹配的类。我们提出了一种正规化方法,可以应用于任何条件生成的ZSL方法,只能利用语义类原型。它学会综合判断特征,以便在训练时间不可用的可能语义描述,即看不见的特征。在文献中常用的四个数据集中评估该方法,其在文献中通常用于感应和转换设置,结果对杠杆或上述现有方法的结果。
translated by 谷歌翻译
零射门学习(ZSL)旨在通过将语义知识从看见课程转移到看不见者来识别新颖的课程。从不同类别之间共享的属性描述中学到的语义知识,该属性描述是用于本地化代表歧视区域特征的对象属性的强子指数,从而实现了显着的视觉语义交互。尽管基于注意的模型已经尝试学习单个图像中的这种区域特征,但是通常忽略视觉特征的可转换性和辨别性属性定位。在本文中,我们提出了一个属性引导的变压器网络,称为Transzero,以改进视觉特征,并在ZSL中鉴定鉴别的视觉嵌入表示。具体而言,Transzero采用特征增强编码器来缓解想象集和ZSL基准之间的交叉数据集偏压,并通过减少区域特征之间的缠结的相对几何关系来提高视觉特征的可转换性。为了学习地区增强的可视功能,Transzero使用视觉语义解码器来在语义属性信息的指导下本地化与给定图像中的每个属性最相关的图像区域。然后,用于在视觉语义嵌入网络中进行有效的视觉语义交互来实现局部增强的视觉特征和语义向量。广泛的实验表明,Transzero在三个ZSL基准上实现了新的最新状态。该代码可用于:\ url {https://github.com/shiming-chen/transzero}。
translated by 谷歌翻译
零拍摄学习(ZSL)旨在将知识从看见课程转移到语义相关的看不见的看不见的类,这在训练期间不存在。 ZSL的有希望的策略是在语义侧信息中综合未经调节的视野类的视觉特征,并结合元学习,以消除模型对所看到的课程的固有偏差。虽然现有的元生成方法追求跨任务分布的共同模型,但我们的目标是构建适应任务特征的生成网络。为此,我们提出了一个属性调制的生成元模型,用于零射击学习(Amaz)。我们的模型包括属性感知调制网络,属性增强生成网络和属性加权分类器。给定看不见的类,调制网络通过应用特定任务的变换自适应地调制发电机,使得生成网络可以适应高度多样化的任务。加权分类器利用数据质量来增强培训过程,进一步提高模型性能。我们对四种广泛使用的基准测试的实证评估表明,Amaz优先效仿最先进的方法在ZSL和广义ZSL设置中,展示了我们方法的优越性。我们对零拍摄图像检索任务的实验表明了Amaz的合成描绘真实视觉特征的情况的能力。
translated by 谷歌翻译
零射击学习(ZSL)通过将语义知识转移到看不见者的语义知识来解决新的类识别问题。通过单独使用单向关注,现有的基于关注的模型在单个图像中努力学习劣势区域特征,这忽略了视觉特征的可转换性和辨别属性定位。在本文中,我们提出了一个跨属性引导的变换器网络,称为Transzero ++,以改进可视化功能,并学习精确的属性本地化,用于ZSL中的语义增强的可视嵌入表示。 Transzero ++由Attribute $ \ LightArrow $ Visual Transformer子网(AVT)和Visual $ \ LightArrow $属性变压器子网(增值税)组成。具体而言,AVT首先采用功能增强编码器来缓解交叉数据集问题,并通过减少区域特征之间的缠绕的相对几何关系来提高视觉特征的可转换性。然后,使用属性$ \ lightArrow $可视解码器来本地化与基于属性的可视特征表示的给定图像中的每个属性最相关的图像区域。类似地,VAT使用类似的功能增强编码器来改进视觉功能,这些功能进一步应用于Visual $ \ lightarrow $属性解码器,以学习基于Visual-基的属性功能。通过进一步引入语义协作损失,两个属性引导的变压器通过语义协作学习互相教导学习语义增强的视觉嵌入。广泛的实验表明,Transzero ++在三个挑战ZSL基准上实现了新的最先进的结果。该代码可用于:\ url {https://github.com/shiming-chen/transzero_pp}。
translated by 谷歌翻译
广义零射击学习(GZSL)旨在培训一个模型,以在某些输出类别在监督学习过程中未知的情况下对数据样本进行分类。为了解决这一具有挑战性的任务,GZSL利用可见的(源)和看不见的(目标)类的语义信息来弥合所见类和看不见的类之间的差距。自引入以来,已经制定了许多GZSL模型。在这篇评论论文中,我们介绍了有关GZSL的全面评论。首先,我们提供了GZSL的概述,包括问题和挑战。然后,我们为GZSL方法介绍了分层分类,并讨论了每个类别中的代表性方法。此外,我们讨论了GZSL的可用基准数据集和应用程序,以及有关研究差距和未来研究方向的讨论。
translated by 谷歌翻译
零击学习(ZSL)旨在识别培训集中没有样本的类。一种代表性的解决方案是直接学习将视觉特征与相应的类语义相关联的嵌入函数,以识别新类。许多方法扩展了这种解决方案,最近的方法特别热衷于从图像中提取丰富的特征,例如属性功能。这些属性特征通常在每个单独的图像中提取;但是,不强调跨图像的特征的共同特征。在本文中,我们提出了一个新的框架来通过明确学习原型超出图像来提高ZSL,并用图像中的属性级特征对其进行对比优化它们。除了新颖的体系结构外,还针对属性表示强调了两个元素:新的原型生成模块旨在从属性语义生成属性原型;引入了基于硬示例的对比优化方案,以增强嵌入空间中的属性级特征。我们探索了两个基于CNN的替代骨干,基于CNN的骨干,以在三个标准基准测试(Cub,Sun,Awa2)上构建我们的框架并进行实验。这些基准测试的结果表明,我们的方法通过相当大的利润来改善艺术的状态。我们的代码将在https://github.com/dyabel/coar-zsl.git上找到
translated by 谷歌翻译
广义的零射击学习(GZSL)旨在通过将语义知识从看见的类别转移到看不见的阶级来识别所见类和看不见的类别的图像。这是一个有希望的解决方案,可以利用生成模型的优势,以根据从所见类中学到的知识来幻觉现实的看不见的样本。但是,由于产生的变化,大多数现有方法的合成样本可能从看不见的数据的实际分布中偏离。为了解决这个问题,我们提出了一个基于流动的生成框架,该框架由多种条件仿射耦合层组成,用于学习看不见的数据生成。具体而言,我们发现并解决了触发产生转移的三个潜在问题,即语义不一致,方差崩溃和结构障碍。首先,为了增强生成样品中语义信息的反射,我们将语义信息明确嵌入到每个条件仿射耦合层中的转换中。其次,为了恢复真正看不见的特征的固有差异,我们引入了一种边界样本挖掘策略,具有熵最大化,以发现语义原型的更困难的视觉变体,并在此调整分类器的决策边界。第三,提出了一种相对定位策略来修改属性嵌入,引导它们充分保留类间的几何结构,并进一步避免语义空间中的结构障碍。四个GZSL基准数据集的广泛实验结果表明,GSMFlow在GZSL上实现了最先进的性能。
translated by 谷歌翻译
广义零射击学习(GZSL)旨在识别具有辅助语义信息的新类别,例如,类别属性。在本文中,我们通过逐步提高视觉表现的跨域可转换性和类别辨认性,处理域移位问题的临界问题,即观看和看不见的类别之间的困惑。我们命名为双渐进式原型网络(DPPN)的方法构造了两种类型的原型,分别为属性和类别记录原型视觉模式。使用属性原型,DPPN交替地搜索与属性相关的本地区域并更新相应的属性原型以逐步探索准确的属性区域对应。这使DPPN能够产生具有精确属性定位能力的可视表示,这有利于语义 - 视觉对齐和表示转换性。此外,除了渐进属性本地化之外,DPPN还将项目类别原型进一步投影到多个空间中,以逐步排斥来自不同类别的视觉表示,这提高了类别辨别性。属性和类别原型都在统一的框架中进行了协作学习,这使得DPPN可转移和独特的视觉表示。四个基准测试的实验证明,DPPN有效地减轻了GZSL中的域移位问题。
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译
最近深入生成模型的进步概述了零拍学习(ZSL)领域的有希望的角度。大多数生成ZSL方法使用类别语义属性加上高斯噪声来生成可视化功能。在生成看不见的样本后,这家族方法有效地将ZSL问题转变为监督分类方案。但是,现有模型使用单个语义属性,其中包含类别的完整属性信息。生成的数据还携带完整的属性信息,但实际上,视觉样本通常具有有限的属性。因此,来自属性的生成数据可能具有不完整的语义。基于这一事实,我们提出了一种新颖的框架来通过综合各种功能来提升ZSL。此方法使用增强语义属性来培训生成模型,以便模拟视觉功能的真实分布。我们在四个基准数据集中评估提出的模型,观察到最先进的显着性能改善。
translated by 谷歌翻译
教学机器根据少数训练样本认识到一个新的类别,特别是由于缺乏数据缺乏的新型类别的难题了解,只有一个仍然挑战。然而,人类可以快速学习新课程,甚至在人类可以讲述基于视觉和语义先前知识的关于每个类别的歧视特征时,甚至给出了一些样本。为了更好地利用这些先验知识,我们提出了语义引导的注意力(SEGA)机制,其中语义知识用于以自上而下的方式引导视觉感知,在区分类别时应注意哪些视觉特征。结果,即使少量样品也可以更具判别嵌入新类。具体地,借助从基类传输可视化的先验知识,接受了一个特征提取器,以培训以将每个小组类的数量的每个小组的图像嵌入到视觉原型中。然后,我们学习一个网络将语义知识映射到特定于类别的注意力矢量,该向量将用于执行功能选择以增强视觉原型。在Miniimagenet,Tieredimagenet,CiFar-FS和Cub上进行了广泛的实验表明,我们的语义引导的注意力实现了预期的功能和优于最先进的结果。
translated by 谷歌翻译
很少有开放式识别旨在对可见类别的培训数据进行有限的培训数据进行分类和新颖的图像。这项任务的挑战是,该模型不仅需要学习判别性分类器,以用很少的培训数据对预定的类进行分类,而且还要拒绝从未见过的培训时间出现的未见类别的输入。在本文中,我们建议从两个新方面解决问题。首先,我们没有像在标准的封闭设置分类中那样学习看到类之间的决策边界,而是为看不见的类保留空间,因此位于这些区域中的图像被认为是看不见的类。其次,为了有效地学习此类决策边界,我们建议利用所见类的背景功能。由于这些背景区域没有显着促进近距离分类的决定,因此自然地将它们用作分类器学习的伪阶层。我们的广泛实验表明,我们提出的方法不仅要优于多个基线,而且还为三个流行的基准测试(即Tieredimagenet,Miniimagenet和Caltech-uscd Birds-birds-2011-2011(Cub))设定了新的最先进结果。
translated by 谷歌翻译
广义零射击学习(GZSL)仍然是深度学习的技术挑战,因为它必须在没有目标类别的数据中识别源和目标类别。为了仅使用来自源类数据的数据训练,源和目标类之间的语义关系,我们解决了从信息理论观点的广告传输和语义关系的量化。为此,我们遵循原型模型,并将关注的变量格式化为概率向量。利用所提出的概率矢量表示,可以通过简单的封闭形式有效地评估诸如相互信息和熵的信息测量。我们讨论使用原型模型时常见的嵌入空间和距离功能的选择。然后我们提出了三个信息 - 理论丢失函数,用于确定性GZSL模型:桥接数据和目标类别的相互信息丢失;不确定性感知熵约束丢失,以防止使用后的数据学习嵌入目标类别时;在将语义表示映射到公共空间时,语义保留交叉熵损失以保留语义关系。仿真结果表明,作为确定性模型,我们所提出的方法获得了GZSL基准数据集的最新状态。我们通过基线模型 - 深度校准网络(DCN)实现了21%-64%的改进,并且首次证明了确定性模型可以执行和生成的模型。此外,我们提出的模型与生成模型兼容。仿真研究表明,通过与F-CLSWAN结合,与先进的生成模型相比,我们获得了可比的结果。
translated by 谷歌翻译
通过对齐跨模型自动化器的潜在空间来学习共同的潜在嵌入是广义零拍分类(GZSC)的有效策略。然而,由于缺乏细粒度的实例 - 明智的注释,它仍然很容易遭受域移位问题,用于多样化图像的视觉表示与固定属性的语义表示之间的差异。在本文中,我们通过学习对齐的跨模型表示(称为ACMR)来提出创新的AutoEncoder网络,用于GZSC。具体地,我们提出了一种新的视觉 - 语义对准(VSA)方法,以加强由学习分类器引导的潜在子空间上的交叉模态潜在特征的对准。此外,我们提出了一种新颖的信息增强模块(IEM),以减少潜在变量折叠的可能性同时鼓励潜在变量的判别能力。公开数据集的广泛实验证明了我们方法的最先进的性能。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
很少有射击学习(FSL)由于其在模型训练中的能力而无需过多的数据而引起了计算机视觉的越来越多的关注。 FSL具有挑战性,因为培训和测试类别(基础与新颖集)可能会在很大程度上多样化。传统的基于转移的解决方案旨在将从大型培训集中学到的知识转移到目标测试集中是有限的,因为任务分配转移的关键不利影响没有充分解决。在本文中,我们通过结合度量学习和通道注意的概念扩展了基于转移方法的解决方案。为了更好地利用特征主链提取的特征表示,我们提出了特定于类的通道注意(CSCA)模块,该模块通过分配每个类别的CSCA权重向量来学会突出显示每个类中的判别通道。与旨在学习全球班级功能的一般注意力模块不同,CSCA模块旨在通过非常有效的计算来学习本地和特定的特定功能。我们评估了CSCA模块在标准基准测试中的性能,包括Miniimagenet,Cifar-imagenet,Cifar-FS和Cub-200-200-2011。实验在电感和/跨域设置中进行。我们取得了新的最新结果。
translated by 谷歌翻译
零拍学习(ZSL)旨在将分类能力转移到看不见的课程。最近的方法证明,泛化和专业化是在ZSL中实现良好性能的两个基本能力。然而,它们只关注一个能力,导致模型,这些模型太过普遍,具有劣化的分类能力或专注于概括到看不见的课程。在本文中,我们提出了一种端到端网络,具有平衡的泛化和专业化能力,称为BGSNet,利用两种能力,并在实例和数据集级别平衡它们。具体而言,BGSNet由两个分支组成:泛化网络(GNET),它应用epiSodic元学习学习广义知识,以及平衡专业化网络(BSNet),它采用多个细心提取器来提取歧视特征并满足实例级别平衡。一种新颖的自调整分集损失旨在优化具有较少冗余和更多样性的BSNet。我们进一步提出了可分辨性的数据集级别平衡并更新线性退火调度中的权重,以模拟网络修剪,从而以低成本获得BSNet的最佳结构,并且实现了数据集级平衡。四个基准数据集的实验展示了我们模型的效果。足够的组分消融证明了整合泛化和专业能力的必要性。
translated by 谷歌翻译
零拍学习方法依赖于固定的视觉和语义嵌入,从独立视觉和语言模型中提取,都是预先培训的其他大型任务。这是当前零拍摄学习框架的弱点,因为这种不相交的嵌入不能充分将可视化和文本信息与其共享语义内容充分相关联。因此,我们建议通过在代理任务上计算带有双流网络的联合图像和文本模型来学习语义接地和丰富的视觉信息。为了改善由属性提供的图像和文本表示之间的这种对齐,我们利用辅助标题提供接地的语义信息。我们的方法,在若干基准数据集中评估了零射击学习的关节嵌入,提高了标准(APY $ + 1.6 $ \%的现有最先进方法的性能($ + 2.6 \%$在FLO)上)和AWA $ 2 $ + 2.1 \%$ 2 $ 2 $ 2美元,幼崽+ 2.2 \%$ 2。幼崽)零射击识别。
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译