Inspired by strategies like Active Learning, it is intuitive that intelligently selecting the training classes from a dataset for Zero-Shot Learning (ZSL) can improve the performance of existing ZSL methods. In this work, we propose a framework called Diverse and Rare Class Identifier (DiRaC-I) which, given an attribute-based dataset, can intelligently yield the most suitable "seen classes" for training ZSL models. DiRaC-I has two main goals - constructing a diversified set of seed classes, followed by a visual-semantic mining algorithm initialized by these seed classes that acquires the classes capturing both diversity and rarity in the object domain adequately. These classes can then be used as "seen classes" to train ZSL models for image classification. We adopt a real-world scenario where novel object classes are available to neither DiRaC-I nor the ZSL models during training and conducted extensive experiments on two benchmark data sets for zero-shot image classification - CUB and SUN. Our results demonstrate DiRaC-I helps ZSL models to achieve significant classification accuracy improvements.
translated by 谷歌翻译
零拍分类问题的大多数现有算法通常依赖于类别之间基于属性的语义关系,以实现新型类别的分类而不观察其任何实例。但是,训练零拍分类模型仍然需要训练数据集中的每个类(甚至是实例)的属性标记,这也是昂贵的。为此,在本文中,我们提出了一个新的问题场景:“我们是否能够为新颖的属性探测器/分类器获得零射击学习,并使用它们自动注释数据集以进行标记效率?”基本上,仅给予一小组探测器,这些探测器都学会了识别一些手动注释的属性(即,所见属性),我们的目标是以零射学学习方式综合新颖属性的探测器。我们所提出的方法,零拍摄的属性(ZSLA),这是我们最好的知识中的第一个,通过应用SET操作首先将所看到的属性分解为基本属性,然后重新组合地解决这一新的研究问题。这些基本属性进入了新颖的属性。进行广泛的实验以验证我们合成探测器的能力,以便准确地捕获新颖性的语义,并与其他基线方法相比,在检测和定位方面表现出优越的性能。此外,在CALTECH-UCSD鸟类-200-2011 DataSet上使用仅32个属性,我们所提出的方法能够合成其他207个新颖的属性,而在由我们合成重新注释的数据集上培训的各种广义零拍分类算法属性探测器能够提供可比性的性能与手动地理注释有关的那些。
translated by 谷歌翻译
广义零射击学习(GZSL)旨在培训一个模型,以在某些输出类别在监督学习过程中未知的情况下对数据样本进行分类。为了解决这一具有挑战性的任务,GZSL利用可见的(源)和看不见的(目标)类的语义信息来弥合所见类和看不见的类之间的差距。自引入以来,已经制定了许多GZSL模型。在这篇评论论文中,我们介绍了有关GZSL的全面评论。首先,我们提供了GZSL的概述,包括问题和挑战。然后,我们为GZSL方法介绍了分层分类,并讨论了每个类别中的代表性方法。此外,我们讨论了GZSL的可用基准数据集和应用程序,以及有关研究差距和未来研究方向的讨论。
translated by 谷歌翻译
零拍摄学习(ZSL)旨在将知识从看见课程转移到语义相关的看不见的看不见的类,这在训练期间不存在。 ZSL的有希望的策略是在语义侧信息中综合未经调节的视野类的视觉特征,并结合元学习,以消除模型对所看到的课程的固有偏差。虽然现有的元生成方法追求跨任务分布的共同模型,但我们的目标是构建适应任务特征的生成网络。为此,我们提出了一个属性调制的生成元模型,用于零射击学习(Amaz)。我们的模型包括属性感知调制网络,属性增强生成网络和属性加权分类器。给定看不见的类,调制网络通过应用特定任务的变换自适应地调制发电机,使得生成网络可以适应高度多样化的任务。加权分类器利用数据质量来增强培训过程,进一步提高模型性能。我们对四种广泛使用的基准测试的实证评估表明,Amaz优先效仿最先进的方法在ZSL和广义ZSL设置中,展示了我们方法的优越性。我们对零拍摄图像检索任务的实验表明了Amaz的合成描绘真实视觉特征的情况的能力。
translated by 谷歌翻译
Suffering from the extreme training data imbalance between seen and unseen classes, most of existing state-of-theart approaches fail to achieve satisfactory results for the challenging generalized zero-shot learning task. To circumvent the need for labeled examples of unseen classes, we propose a novel generative adversarial network (GAN) that synthesizes CNN features conditioned on class-level semantic information, offering a shortcut directly from a semantic descriptor of a class to a class-conditional feature distribution. Our proposed approach, pairing a Wasserstein GAN with a classification loss, is able to generate sufficiently discriminative CNN features to train softmax classifiers or any multimodal embedding method. Our experimental resultsdemonstrate a significant boost in accuracy over the state of the art on five challenging datasets -CUB, FLO, SUN, AWA and ImageNet -in both the zero-shot learning and generalized zero-shot learning settings.
translated by 谷歌翻译
零射击学习(ZSL)通过将语义知识转移到看不见者的语义知识来解决新的类识别问题。通过单独使用单向关注,现有的基于关注的模型在单个图像中努力学习劣势区域特征,这忽略了视觉特征的可转换性和辨别属性定位。在本文中,我们提出了一个跨属性引导的变换器网络,称为Transzero ++,以改进可视化功能,并学习精确的属性本地化,用于ZSL中的语义增强的可视嵌入表示。 Transzero ++由Attribute $ \ LightArrow $ Visual Transformer子网(AVT)和Visual $ \ LightArrow $属性变压器子网(增值税)组成。具体而言,AVT首先采用功能增强编码器来缓解交叉数据集问题,并通过减少区域特征之间的缠绕的相对几何关系来提高视觉特征的可转换性。然后,使用属性$ \ lightArrow $可视解码器来本地化与基于属性的可视特征表示的给定图像中的每个属性最相关的图像区域。类似地,VAT使用类似的功能增强编码器来改进视觉功能,这些功能进一步应用于Visual $ \ lightarrow $属性解码器,以学习基于Visual-基的属性功能。通过进一步引入语义协作损失,两个属性引导的变压器通过语义协作学习互相教导学习语义增强的视觉嵌入。广泛的实验表明,Transzero ++在三个挑战ZSL基准上实现了新的最先进的结果。该代码可用于:\ url {https://github.com/shiming-chen/transzero_pp}。
translated by 谷歌翻译
We study the problem of object recognition for categories for which we have no training examples, a task also called zero-data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.
translated by 谷歌翻译
零拍学习(ZSL)旨在识别培训时间没有可视化样本的类。要解决此问题,可以依赖每个类的语义描述。典型的ZSL模型学习所看到的类和相应的语义描述的视觉样本之间的映射,以便在测试时间的看不见的类上对此进行操作。最先进的方法依赖于从类的原型合成视觉特征的生成模型,从而可以以监督方式学习分类器。但是,这些方法通常偏向于所看到的类,其视觉实例是唯一可以与给定类原型匹配的类。我们提出了一种正规化方法,可以应用于任何条件生成的ZSL方法,只能利用语义类原型。它学会综合判断特征,以便在训练时间不可用的可能语义描述,即看不见的特征。在文献中常用的四个数据集中评估该方法,其在文献中通常用于感应和转换设置,结果对杠杆或上述现有方法的结果。
translated by 谷歌翻译
最近深入生成模型的进步概述了零拍学习(ZSL)领域的有希望的角度。大多数生成ZSL方法使用类别语义属性加上高斯噪声来生成可视化功能。在生成看不见的样本后,这家族方法有效地将ZSL问题转变为监督分类方案。但是,现有模型使用单个语义属性,其中包含类别的完整属性信息。生成的数据还携带完整的属性信息,但实际上,视觉样本通常具有有限的属性。因此,来自属性的生成数据可能具有不完整的语义。基于这一事实,我们提出了一种新颖的框架来通过综合各种功能来提升ZSL。此方法使用增强语义属性来培训生成模型,以便模拟视觉功能的真实分布。我们在四个基准数据集中评估提出的模型,观察到最先进的显着性能改善。
translated by 谷歌翻译
零拍学习方法依赖于固定的视觉和语义嵌入,从独立视觉和语言模型中提取,都是预先培训的其他大型任务。这是当前零拍摄学习框架的弱点,因为这种不相交的嵌入不能充分将可视化和文本信息与其共享语义内容充分相关联。因此,我们建议通过在代理任务上计算带有双流网络的联合图像和文本模型来学习语义接地和丰富的视觉信息。为了改善由属性提供的图像和文本表示之间的这种对齐,我们利用辅助标题提供接地的语义信息。我们的方法,在若干基准数据集中评估了零射击学习的关节嵌入,提高了标准(APY $ + 1.6 $ \%的现有最先进方法的性能($ + 2.6 \%$在FLO)上)和AWA $ 2 $ + 2.1 \%$ 2 $ 2 $ 2美元,幼崽+ 2.2 \%$ 2。幼崽)零射击识别。
translated by 谷歌翻译
广义的零射击学习(GZSL)旨在通过将语义知识从看见的类别转移到看不见的阶级来识别所见类和看不见的类别的图像。这是一个有希望的解决方案,可以利用生成模型的优势,以根据从所见类中学到的知识来幻觉现实的看不见的样本。但是,由于产生的变化,大多数现有方法的合成样本可能从看不见的数据的实际分布中偏离。为了解决这个问题,我们提出了一个基于流动的生成框架,该框架由多种条件仿射耦合层组成,用于学习看不见的数据生成。具体而言,我们发现并解决了触发产生转移的三个潜在问题,即语义不一致,方差崩溃和结构障碍。首先,为了增强生成样品中语义信息的反射,我们将语义信息明确嵌入到每个条件仿射耦合层中的转换中。其次,为了恢复真正看不见的特征的固有差异,我们引入了一种边界样本挖掘策略,具有熵最大化,以发现语义原型的更困难的视觉变体,并在此调整分类器的决策边界。第三,提出了一种相对定位策略来修改属性嵌入,引导它们充分保留类间的几何结构,并进一步避免语义空间中的结构障碍。四个GZSL基准数据集的广泛实验结果表明,GSMFlow在GZSL上实现了最先进的性能。
translated by 谷歌翻译
While video action recognition has been an active area of research for several years, zero-shot action recognition has only recently started gaining traction. In this work, we propose a novel end-to-end trained transformer model which is capable of capturing long range spatiotemporal dependencies efficiently, contrary to existing approaches which use 3D-CNNs. Moreover, to address a common ambiguity in the existing works about classes that can be considered as previously unseen, we propose a new experimentation setup that satisfies the zero-shot learning premise for action recognition by avoiding overlap between the training and testing classes. The proposed approach significantly outperforms the state of the arts in zero-shot action recognition in terms of the the top-1 accuracy on UCF-101, HMDB-51 and ActivityNet datasets. The code and proposed experimentation setup are available in GitHub: https://github.com/Secure-and-Intelligent-Systems-Lab/SemanticVideoTransformer
translated by 谷歌翻译
在许多现实世界的医学图像分类设置中,我们无法访问所有可能的疾病类别的样本,而强大的系统有望在识别新型测试数据方面具有高性能。我们提出了一种通用的零射击学习(GZSL)方法,该方法使用自我监督学习(SSL)用于:1)选择不同疾病类别的锚定向量;2)训练功能生成器。我们的方法不需要类属性向量,这些向量可用于自然图像,但不适合医学图像。SSL确保锚向量代表每个类别。SSL还用于生成看不见类的合成特征。使用更简单的架构,我们的方法与基于SSL的最先进的GZSL方法匹配自然图像,并优于医学图像的所有方法。我们的方法足够适应于自然图像时可容纳类属性向量。
translated by 谷歌翻译
虽然对2D图像的零射击学习(ZSL)进行了许多研究,但其在3D数据中的应用仍然是最近且稀缺的,只有几种方法限于分类。我们在3D数据上介绍了ZSL和广义ZSL(GZSL)的第一代生成方法,可以处理分类,并且是第一次语义分割。我们表明它达到或胜过了INTEMNET40对归纳ZSL和归纳GZSL的ModelNet40分类的最新状态。对于语义分割,我们创建了三个基准,用于评估此新ZSL任务,使用S3DIS,Scannet和Semantickitti进行评估。我们的实验表明,我们的方法优于强大的基线,我们另外为此任务提出。
translated by 谷歌翻译
零射击动作识别是识别无视觉示例的识别性类别的任务,只有在没有看到看到的类别的seman-tic嵌入方式。问题可以看作是学习一个函数,该函数可以很好地讲述不见的阶级实例,而不会在类之间失去歧视。神经网络可以模拟视觉类别之间的复杂边界,从而将其作为监督模型的成功范围。但是,这些高度专业化的类边界可能不会从看不见的班级转移到看不见的类别。在本文中,我们提出了基于质心的表示,该表示将视觉和语义表示,同时考虑所有训练样本,通过这种方式,对看不见的课程的实例很好。我们使用强化学习对群集进行优化,这对我们的工作方法表明了至关重要的。我们称提出的甲壳类动物的命名为Claster,并观察到它在所有标准数据集中始终超过最先进的方法,包括UCF101,HMDB51和奥运会运动;在Thestandard Zero-shot评估和广义零射击学习中。此外,我们表明我们的模型在图像域也可以进行com的性能,在许多设置中表现出色。
translated by 谷歌翻译
视觉反事实解释用来自干扰器图像的区域代替了查询图像中的图像区域,以使系统对转换图像的决策变为干扰器类。在这项工作中,我们提出了一个新颖的框架,用于根据两个关键思想计算视觉反事实说明。首先,我们强制执行替换和替换区域包含相同的语义部分,从而产生了更加一致的解释。其次,我们以计算上有效的方式使用多个干扰器图像,并获得更少的区域替代方法的更多歧视性解释。我们的方法在语义上一致性高27%,并且比三个细粒图像识别数据集的竞争方法要快27%。我们通过机器教学实验来强调反事实对现有作品的实用性,在这些实验中,我们教人类对不同的鸟类进行分类。我们还用零件和属性的词汇来补充我们的解释,这些零件和属性对系统的决定有所帮助。在此任务中,当使用相对于现有作品的反事实解释时,我们将获得最新的结果,从而增强了语义一致的解释的重要性。源代码可从https://github.com/facebookresearch/visual-counterfactuals获得。
translated by 谷歌翻译
基于世代的方法已在零拍学习研究中吸引了大部分最近的关注。在本文中,我们试图解构生成器分类器框架以指导其改进和扩展。我们首先通过将发电机学习的实例级分布与高斯分布交替进行分析。然后,我们通过分解分类器梯度来揭示生成器在分类器训练中学习的类级分布和实例级分布的作用。我们最终以从生成器和分类器的解构(即(i)ZSL Generator的键是属性通用化的关键)来改进生成器分类器框架的指南; (ii)分类器学习强调伪伪样本对训练过程中可见类之间的决策界限的影响,并减少可见的未见偏见。我们根据准则提出了一种简单的方法。没有复杂的设计,该提出的方法在四个公共ZSL数据集上优于最新技术,这证明了拟议准则的有效性。在用属性到视觉中心单映射模型代替生成模型时,提出的方法仍然有效,证明其强大的可传递性。接受后,代码将在接受后公开。
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
零击学习(ZSL)旨在预测看不见的课程,其样本在培训期间从未出现过,经常利用其他语义信息(又称侧信息)来桥接培训(见过)课程和看不见的课程。用于零拍图像分类的最有效且最广泛使用的语义信息之一是属性,是类级视觉特征的注释。但是,由于细粒度的注释短缺,属性不平衡和同时出现,当前方法通常无法区分图像之间的那些微妙的视觉区别,从而限制了它们的性能。在本文中,我们提出了一种名为Duet的基于变压器的端到端ZSL方法,该方法通过自我监督的多模式学习范式从审前的语言模型(PLM)中整合了潜在的语义知识。具体而言,我们(1)开发了一个跨模式的语义接地网络,以研究模型从图像中解开语义属性的能力,(2)应用了属性级的对比度学习策略,以进一步增强模型对细粒视觉特征的歧视反对属性的共同出现和不平衡,(3)提出了一个多任务学习策略,用于考虑多模型目标。通过对三个标准ZSL基准测试和配备ZSL基准的知识图进行广泛的实验,我们发现二重奏通常可以实现最新的性能,其组件是有效的,并且其预测是可以解释的。
translated by 谷歌翻译
零射击学习(ZSL)的目前方法努力学习能够捕获复杂相关性的易于化语义知识。通过\ EMPH {螺旋课程},这增强通过重新访问知识学习过程的启发,我们提出螺旋学习的一种形式,其重访基于属性组的序列(视觉表示例如,\ EMPH {颜色}和\ EMPH的组合组{形状})。螺旋学习旨在学习广义本地相关性,使模型能够逐步增强全球学习,从而了解复杂的相关性。我们的实现基于2级\ emph {加强自修订(RSR)}框架:\ emph {preview}和\ emph {review}。 RSR首先预览视觉信息以虚弱的方式构建不同的属性组。然后,它基于属性组螺旋地学习精细的本地,并使用本地来修改全局语义相关性。我们的框架在零射频和广义零点设置的四个基准数据集中占据了最先进的算法,这证明了螺旋学习在学习易于和复杂的相关性方面的有效性。我们还进行了广泛的分析,以显示属性组和加强决策过程可以捕获互补语义信息以改善预测和援助解释性。
translated by 谷歌翻译