本文介绍了一个新颖的社会偏好意识分散的安全控制框架,以解决避免多机构碰撞的责任分配问题。考虑到代理不一定会以对称方式进行合作,本文着重于具有不同合作水平的异质代理之间的半合作行为。利用社会价值取向(SVO)来量化个人自私的思想,我们提出了一个新颖的责任相关社会价值取向(R-SVO)的新颖概念,以表达成对代理之间的预期相对社会含义。这用于根据相应的责任份额来重新定义每个代理商的社会偏好或个性,以促进协调方案,例如所有代理商以不对称方式互动的半合件碰撞避免。通过通过拟议的本地成对责任权重纳入这种相对的社会影响,我们为个人代理人开发了与责任相关的控制屏障功能的安全控制框架,并通过正式可证明的安全保证可以实现多代理碰撞的避免。提供了模拟来证明在多个多代理导航任务中所提出的框架的有效性和效率,例如位置交换游戏,自动驾驶汽车公路公路坡道合并方案以及圆形交换游戏。
translated by 谷歌翻译
小型航空车的重量,空间和功率限制通常会阻止现代控制技术的应用,而无需简化大量模型。此外,高速敏捷行为(例如在无人机赛车中表现出来的行为)使这些简化的模型过于不可靠,无法安全至关重要。在这项工作中,我们介绍了时变备份控制器(TBC)的概念:用户指定的操作与备份控制器相结合,该备份控制器生成了参考轨迹,从而确保了非线性系统的安全性。与传统的备份控制器相比,TBC减少了保守主义,可以直接应用于多机构协调以确保安全性。从理论上讲,我们提供了严格减少保守主义的条件,描述了如何在多个TBC之间切换并显示如何将TBC嵌入多代理设置。在实验上,我们验证TBC在过滤飞行员的动作时会安全地增加操作自由,并在将两个四肢的分散安全过滤应用于分散的安全过滤时,证明了稳健性和计算效率。
translated by 谷歌翻译
本文介绍了可怜的高阶控制屏障功能(CBF),即结束于最终的可训练以及学习系统。CBFS通常是过于保守的,同时保证安全。在这里,我们通过使用环境依赖性软化它们的定义来解决它们的保守性,而不会损失安全保证,并将其嵌入到可分辨率的二次方案中。这些新颖的安全层称为巴里斯网,可以与任何基于神经网络的控制器结合使用,并且可以通过梯度下降训练。Barriernet允许神经控制器的安全约束适应改变环境。我们在一系列控制问题上进行评估,例如2D和3D空间中的交通合并和机器人导航,并与最先进的方法相比,证明其有效性。
translated by 谷歌翻译
无线技术的最新进步使连接的自动驾驶汽车(CAV)能够通过车辆到车辆(V2V)通信收集有关其环境的信息。在这项工作中,我们为CAVS设计了基于信息共享的多代理增援学习(MARL)框架,以在做出决定以提高交通效率和安全性时利用额外的信息。我们提出的安全参与者批评算法有两种新技术:截断的Q功能和安全动作映射。截断的Q功能利用了来自相邻骑士的共享信息,以使Q-功能的联合状态和动作空间在我们的算法中不会在大型CAV系统中生长。我们证明了截短Q和全局Q函数之间近似误差的结合。安全的操作映射为基于控制屏障功能的培训和执行提供了可证明的安全保证。我们使用CARLA模拟器进行实验,我们表明我们的方法可以在不同的CAV比和不同的交通密度下的平均速度和舒适性方面提高CAV系统的效率。我们还表明,我们的方法避免执行不安全的动作,并始终保持与其他车辆的安全距离。我们构建了一个障碍物的场景,以表明共同的愿景可以帮助骑士早些时候观察障碍,并采取行动避免交通拥堵。
translated by 谷歌翻译
在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
在本文中,我们提出了针对无人接地车辆(UGV)的新的控制屏障功能(CBF),该功能有助于避免与运动学(非零速度)障碍物发生冲突。尽管当前的CBF形式已经成功地保证了与静态障碍物的安全/碰撞避免安全性,但动态案例的扩展已获得有限的成功。此外,借助UGV模型,例如Unicycle或自行车,现有CBF的应用在控制方面是保守的,即在某些情况下不可能进行转向/推力控制。从经典的碰撞锥中汲取灵感来避免轨迹规划,我们介绍了其新颖的CBF配方,并具有对独轮车和自行车模型的安全性保证。主要思想是确保障碍物的速度W.R.T.车辆总是指向车辆。因此,我们构建了一个约束,该约束确保速度向量始终避开指向车辆的向量锥。这种新控制方法的功效在哥白尼移动机器人上进行了实验验证。我们将其进一步扩展到以自行车模型的形式扩展到自动驾驶汽车,并在Carla模拟器中的各种情况下证明了避免碰撞。
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译
我们提出了一种涉及无罪交叉口,环形交叉路口和合并期间的人类驱动因素和自治车辆(AVS)的多智能经纪人规划的新方法。在多代理规划中,主要挑战是预测其他代理人,特别是人类驱动因素的行为,因为他们的意图隐藏着其他代理人。我们的算法使用博弈论开发一个名为GamePlan的新拍卖,这直接基于其驱动风格来确定每个代理的最佳动作(这是可通过常用传感器观察到的)。 GamePlan为更具攻击性或不耐烦的驱动程序和更低的优先级分配更高的优先级,以及更多保守或患者司机的优先级;理论上,我们证明了这种方法是游戏 - 理论上最佳地防止冲突和死锁。我们将我们的方法与先前的最先进的拍卖技术进行比较,包括经济拍卖,基于时间的拍卖(先进先出)和随机竞标,并表明这些方法中的每一种都会导致代理商之间的碰撞帐户驱动程序行为。我们另外与基于深度加强学习,深度学习和博弈理论的方法进行比较,并呈现我们对这些方法的好处。最后,我们表明我们的方法可以在现实世界与人类驱动程序实施。
translated by 谷歌翻译
自驱动粒子(SDP)描述了日常生活中常见的一类常见的多种子体系统,例如植绒鸟类和交通流量。在SDP系统中,每个代理商都追求自己的目标,并不断改变其与附近代理商的合作或竞争行为。手动设计用于此类SDP系统的控制器是耗时的,而产生的紧急行为往往是不可逼真的,也不是更广泛的。因此,SDP系统的现实模拟仍然具有挑战性。强化学习提供了一种吸引人的替代方案,用于自动化SDP控制器的开发。然而,以前的多档强化学习(Marl)方法将代理人定义为手头之前的队友或敌人,这未能捕获每个代理的作用的SDP的本质,即使在一个集中也变化或竞争。为了用Marl模拟SDP,一个关键挑战是协调代理的行为,同时仍然最大化个人目标。将交通仿真作为测试床,在这项工作中,我们开发了一种称为协调政策优化(Copo)的新型MARL方法,该方法包括社会心理学原理来学习SDP的神经控制器。实验表明,与各种度量标准的Marl基线相比,该方法可以实现优越的性能。明显的车辆明显地表现出复杂和多样化的社会行为,以提高整个人口的性能和安全性。演示视频和源代码可用于:https://decisionforce.github.io/copo/
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
提高生产线的灵活性的需求是呼吁机器人与人类工人合作。但是,现有的交互式工业机器人仅保证内在安全性(减少碰撞影响),但不能保证交互式安全性(避免碰撞),这极大地限制了其灵活性。该问题源于工业机器人现有控制软件的两个限制:1)缺乏对实时轨迹修改的支持; 2)缺乏在机器人动态限制下避免碰撞的智能安全控制算法。为了解决第一个问题,以前开发了一个混蛋的位置控制器(JPC)。本文解决了JPC之上的第二个限制。具体来说,我们引入了基于混蛋的安全集算法(JSSA),以确保在考虑机器人动力学约束时避免碰撞。 JSSA极大地扩展了原始安全集算法的范围,该算法仅应用于具有无限加速度的二阶系统。 JSSA在FANUC LR MATE 200ID/7L机器人上实现,并通过HRI任务进行了验证。实验表明,JSSA可以在执行指定任务的同时将机器人始终如一地保持与人的安全距离。
translated by 谷歌翻译
密集的安全导航,城市驾驶环境仍然是一个开放的问题和一个活跃的研究领域。与典型的预测 - 计划方法不同,游戏理论规划考虑了一辆车的计划如何影响另一个车辆的行为。最近的工作表明,在具有非线性目标和约束的普通和游戏中找到当地纳什均衡所需的时间重大改进。当狡辩到驾驶时,这些作品假设场景中的所有车辆一起玩游戏,这可能导致密集流量的难治性计算时间。我们通过假设代理商在他们的观察附近玩游戏的代理商来制定分散的游戏理论规划方法,我们认为我们认为是人类驾驶的更合理的假设。游戏是并行播放的,以进行交互图的所有强烈连接的组件,显着减少了每个游戏中的玩家和约束的数量,从而减少了规划所需的时间。我们证明我们的方法可以通过比较智能驱动程序模型和集中式游戏理论规划在互动数据集中的环形交叉路口时,通过比较智能驱动程序模型和集中式游戏理论规划的性能来实现无碰撞,高效的驾驶。我们的实现可在http://github.com/sisl/decnashplanning获取。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
在与其他代理商的社交互动下进行计划是自动驾驶的重要问题。随着自动驾驶汽车在相互作用中的作用会影响,并且也受到其他试剂的影响,因此自动驾驶汽车需要有效地推断其他试剂的反应。大多数现有方法将问题提出为广泛的NASH平衡问题,该问题通过基于优化的方法解决。但是,他们要求过多的计算资源,并且由于非凸度而容易落入本地最低限度。蒙特卡洛树搜索(MCTS)成功解决了游戏理论问题中的此类问题。但是,随着交互游戏树的成倍增长,一般的MCT仍然需要大量迭代才能达到Optima。在本文中,我们通过将预测算法作为启发式算法纳入了基于一般MCT的高效游戏理论轨迹计划算法。最重要的是,符合社会的奖励和贝叶斯推理算法旨在产生多样化的驾驶行为并确定其他驾驶员的驾驶偏好。结果证明了在高度交互式场景中包含自然主义驾驶行为的数据集的提议框架的有效性。
translated by 谷歌翻译