如何处理时间功能应成为任何时间序列预测模型的核心问题。具有讽刺意味的是,基于深度学习的模型,即使是那些最先进的基线,通常会忽略或误解它。这种行为使他们效率低下,站不住脚和不稳定。在本文中,我们严格地分析了从时间序列属性的角度来看,三个普遍但不足/毫无根据的深度时间序列预测机制或方法,包括归一化方法,多变量预测和输入序列长度。相应的推论和溶液在经验和理论基础上均给出。因此,我们提出了一个新颖的时间序列预测网络,即rtnet,基于上述分析。它足够普遍,可以与受监督和自我监督的预测格式结合在一起。得益于尊重时间序列属性的核心思想,无论哪种预测格式,RTNET显然显示出卓越的预测性能,而其他数十个SOTA时间序列序列序列预测基线在三个现实世界基准数据集中的基本线。总的来说,它甚至占用更少的时间复杂性和记忆使用量,同时获得了更好的预测准确性。源代码可在https://github.com/origamisl/rtnet上获得。
translated by 谷歌翻译
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
translated by 谷歌翻译
尽管基于变压器的方法已显着改善了长期序列预测的最新结果,但它们不仅在计算上昂贵,而且更重要的是,无法捕获全球时间序列的观点(例如,整体趋势)。为了解决这些问题,我们建议将变压器与季节性趋势分解方法相结合,在这种方法中,分解方法捕获了时间序列的全局概况,而变形金刚捕获了更详细的结构。为了进一步提高变压器的长期预测性能,我们利用了以下事实:大多数时间序列倾向于在诸如傅立叶变换之类的知名基础上具有稀疏的表示形式,并开发出频率增强的变压器。除了更有效外,所提出的方法被称为频率增强分解变压器({\ bf fedFormer}),比标准变压器更有效,具有线性复杂性对序列长度。我们对六个基准数据集的实证研究表明,与最先进的方法相比,FedFormer可以将预测错误降低14.8 \%$ $和$ 22.6 \%\%\%\%$ $,分别为多变量和单变量时间序列。代码可在https://github.com/maziqing/fedformer上公开获取。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
时间序列数据在研究以及各种工业应用中无处不在。有效地分析可用的历史数据并提供对未来的见解,使我们能够做出有效的决策。最近的研究见证了基于变压器的架构的出色表现,尤其是在《远距离时间序列》的政权预测中。但是,稀疏变压器体系结构的当前状态无法将其简化和上取样过程磨损,无法以与输入相似的分辨率产生输出。我们提出了基于新颖的Y形编码器架构的Yformer模型,该架构(1)在U-NET启发的体系结构中使用从缩小的编码层到相应的UPSMPLED DEXODER层的直接连接,(2)组合了降尺度/降压/以稀疏的注意来提高采样,以捕获远距离效应,(3)通过添加辅助重建损失来稳定编码器堆栈。已经在四个基准数据集上使用相关基线进行了广泛的实验,与单变量和多元设置的艺术现状相比,MAE的平均改善为19.82,18.41百分比和13.62,11.85百分比MAE。
translated by 谷歌翻译
Time series forecasting is an important problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation. In this paper, we propose to tackle such forecasting problem with Transformer [1]. Although impressed by its performance in our preliminary study, we found its two major weaknesses: (1) locality-agnostics: the point-wise dotproduct self-attention in canonical Transformer architecture is insensitive to local context, which can make the model prone to anomalies in time series; (2) memory bottleneck: space complexity of canonical Transformer grows quadratically with sequence length L, making directly modeling long time series infeasible. In order to solve these two issues, we first propose convolutional self-attention by producing queries and keys with causal convolution so that local context can be better incorporated into attention mechanism. Then, we propose LogSparse Transformer with only O(L(log L) 2 ) memory cost, improving forecasting accuracy for time series with fine granularity and strong long-term dependencies under constrained memory budget. Our experiments on both synthetic data and realworld datasets show that it compares favorably to the state-of-the-art.
translated by 谷歌翻译
Time series forecasting is a long-standing challenge due to the real-world information is in various scenario (e.g., energy, weather, traffic, economics, earthquake warning). However some mainstream forecasting model forecasting result is derailed dramatically from ground truth. We believe it's the reason that model's lacking ability of capturing frequency information which richly contains in real world datasets. At present, the mainstream frequency information extraction methods are Fourier transform(FT) based. However, use of FT is problematic due to Gibbs phenomenon. If the values on both sides of sequences differ significantly, oscillatory approximations are observed around both sides and high frequency noise will be introduced. Therefore We propose a novel frequency enhanced channel attention that adaptively modelling frequency interdependencies between channels based on Discrete Cosine Transform which would intrinsically avoid high frequency noise caused by problematic periodity during Fourier Transform, which is defined as Gibbs Phenomenon. We show that this network generalize extremely effectively across six real-world datasets and achieve state-of-the-art performance, we further demonstrate that frequency enhanced channel attention mechanism module can be flexibly applied to different networks. This module can improve the prediction ability of existing mainstream networks, which reduces 35.99% MSE on LSTM, 10.01% on Reformer, 8.71% on Informer, 8.29% on Autoformer, 8.06% on Transformer, etc., at a slight computational cost ,with just a few line of code. Our codes and data are available at https://github.com/Zero-coder/FECAM.
translated by 谷歌翻译
最近的研究表明,诸如RNN和Transformers之类的深度学习模型为长期预测时间序列带来了显着的性能增长,因为它们有效地利用了历史信息。但是,我们发现,如何在神经网络中保存历史信息,同时避免过度适应历史上的噪音,这仍然有很大的改进空间。解决此问题可以更好地利用深度学习模型的功能。为此,我们设计了一个\ textbf {f}要求\ textbf {i} mpraved \ textbf {l} egendre \ textbf {m} emory模型,或{\ bf film}:它应用了legendre promotions topimate legendre provientions近似历史信息,近似历史信息,使用傅立叶投影来消除噪声,并添加低级近似值以加快计算。我们的实证研究表明,所提出的膜显着提高了由(\ textbf {20.3 \%},\ textbf {22.6 \%})的多变量和单变量长期预测中最新模型的准确性。我们还证明,这项工作中开发的表示模块可以用作一般插件,以提高其他深度学习模块的长期预测性能。代码可从https://github.com/tianzhou2011/film/获得。
translated by 谷歌翻译
Multivariate time series forecasting (MTSF) is a fundamental problem in numerous real-world applications. Recently, Transformer has become the de facto solution for MTSF, especially for the long-term cases. However, except for the one forward operation, the basic configurations in existing MTSF Transformer architectures were barely carefully verified. In this study, we point out that the current tokenization strategy in MTSF Transformer architectures ignores the token uniformity inductive bias of Transformers. Therefore, the vanilla MTSF transformer struggles to capture details in time series and presents inferior performance. Based on this observation, we make a series of evolution on the basic architecture of the vanilla MTSF transformer. We vary the flawed tokenization strategy, along with the decoder structure and embeddings. Surprisingly, the evolved simple transformer architecture is highly effective, which successfully avoids the over-smoothing phenomena in the vanilla MTSF transformer, achieves a more detailed and accurate prediction, and even substantially outperforms the state-of-the-art Transformers that are well-designed for MTSF.
translated by 谷歌翻译
时间是时间序列最重要的特征之一,但没有得到足够的关注。先前的时间序列预测研究主要集中于将过去的子序列(查找窗口)映射到未来的系列(预测窗口),而系列的时间通常只是在大多数情况下都扮演辅助角色。由于这些窗口中的点处理,将其推断为长期未来在模式上是艰难的。为了克服这一障碍,我们提出了一个名为DateFormer的全新时间序列预测框架,他将注意力转移到建模时间上,而不是遵循上述实践。具体而言,首先按时间序列分为补丁,以监督通过Transformers(DERT)的日期编码器表示的动态日期代表的学习。然后将这些表示形式馈入一个简单的解码器,以产生更粗的(或全局)预测,并用于帮助模型从回顾窗口中寻求有价值的信息,以学习精致(或本地)的预测。 DateFormer通过将上述两个部分求和来获得最终结果。我们对七个基准测试的经验研究表明,与序列建模方法相比,时间模型方法对于长期序列预测更有效。 DateFormer产生最先进的准确性,相对改进40%,并将最大可靠的预测范围扩大到半年水平。
translated by 谷歌翻译
延长预测时间是对真实应用的危急需求,例如极端天气预警和长期能源消耗规划。本文研究了时间序列的长期预测问题。基于现有的变压器的模型采用各种自我关注机制来发现远程依赖性。然而,长期未来的复杂时间模式禁止模型找到可靠的依赖项。此外,变压器必须采用长期级效率的稀疏版本的点明显自我关注,从而导致信息利用瓶颈。超越变形金刚,我们将自动运气设计为具有自动相关机制的新型分解架构。我们突破了序列分解的预处理公约,并将其翻新为深层模型的基本内部。这种设计为复杂的时间序列具有渐进式分解容量的自动成形。此外,由随机过程理论的启发,我们基于串联周期性设计自相关机制,这在子系列级别进行了依赖关系发现和表示聚合。自动相关性效率和准确性的自我关注。在长期预测中,自动成形器产生最先进的准确性,六个基准测试中的相对改善38%,涵盖了五种实际应用:能源,交通,经济,天气和疾病。此存储库中可用的代码:\ url {https://github.com/thuml/autoformer}。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
各种深度学习模型,尤其是一些最新的基于变压器的方法,已大大改善了长期时间序列预测的最新性能。但是,这些基于变压器的模型遭受了严重的恶化性能,并延长了输入长度除了使用扩展的历史信息。此外,这些方法倾向于在长期预测中处理复杂的示例,并增加模型复杂性,这通常会导致计算的显着增加和性能较低的鲁棒性(例如,过度拟合)。我们提出了一种新型的神经网络架构,称为Treedrnet,以进行更有效的长期预测。受稳健回归的启发,我们引入了双重残差链接结构,以使预测更加稳健。对Kolmogorov-Arnold表示定理进行了明确的介绍,并明确介绍了特征选择,模型集合和树结构,以进一步利用扩展输入序列,从而提高了可靠的输入序列和Treedrnet的代表力。与以前的顺序预测工作的深层模型不同,Treedrnet完全建立在多层感知下,因此具有很高的计算效率。我们广泛的实证研究表明,Treedrnet比最先进的方法更有效,将预测错误降低了20%至40%。特别是,Treedrnet的效率比基于变压器的方法高10倍。该代码将很快发布。
translated by 谷歌翻译
多元时间序列预测已在各种领域(包括金融,交通,能源和医疗保健)中广泛范围的应用程序。为了捕获复杂的时间模式,大量研究设计了基于RNN,GNN和Transformers的许多变体的复杂神经网络体系结构。但是,复杂的模型在计算上通常是昂贵的,因此当应用于大型现实世界数据集时,在训练和推理效率方面面临严重的挑战。在本文中,我们介绍了Lightts,这是一种基于简单的基于MLP的结构的轻度深度学习体系结构。 LightT的关键思想是在两种微妙的下采样策略之上应用基于MLP的结构,包括间隔抽样和连续采样,灵感来自至关重要的事实,即下采样时间序列通常保留其大多数信息。我们对八个广泛使用的基准数据集进行了广泛的实验。与现有的最新方法相比,Lightts在其中五个方面表现出更好的性能,其余的性能可比性。此外,Lightts高效。与最大的基准数据集上的先前SOTA方法相比,它使用的触发器少于5%。此外,Lightts的预测准确性与以前的SOTA方法相比,在长序列预测任务中,预测准确性的差异要小得多。
translated by 谷歌翻译
时间序列预测是许多应用中的重大问题,例如,金融预测和业务优化。现代数据集可以具有多个相关时间序列,这些时间往往是通过全局(共享)规律和本地(特定)动态生成的。在本文中,我们寻求与DeepdGL的这种预测问题进行解决,这是一种深入预测模型,将动态与全球和局部时间模式脱颖而出。 DeepdGL采用编码器解码器架构,包括两个编码器,分别学习全局和本地时间模式,以及解码器以进行多步预测。具体地,为了模拟复杂的全局模式,引入了矢量量化(VQ)模块,允许全局特征编码器在所有时间序列中学习共享码本。为了模型多样化和异质局部模式,提出了一种由对比多地位编码(CMC)增强的自适应参数生成模块,以为每个单独的时间序列产生本地特征编码器的参数,这使得串联之间的相互信息最大化 - 具体的上下文变量和相应时间序列的长/短期表示。我们对几个现实世界数据集的实验表明DeepdGL优于现有的最先进的模型。
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
深度学习已被积极应用于预测时间序列,从而导致了大量新的自回归模型体系结构。然而,尽管基于时间指数的模型具有吸引人的属性,例如随着时间的推移是连续信号函数,导致表达平滑,但对它们的关注很少。实际上,尽管基于天真的深度指数模型比基于经典时间指数的模型的手动预定义函数表示表达得多,但由于缺乏电感偏见和时间序列的非平稳性,它们的预测不足以预测。在本文中,我们提出了DeepTime,这是一种基于深度指数的模型,该模型通过元学习公式训练,该公式克服了这些局限性,从而产生了有效而准确的预测模型。对现实世界数据集的广泛实验表明,我们的方法通过最先进的方法实现了竞争成果,并且高效。代码可从https://github.com/salesforce/deeptime获得。
translated by 谷歌翻译
OD区域对之间的原点污染(OD)矩阵记录定向流数据。矩阵中复杂的时空依赖性使OD矩阵预测(ODMF)问题不仅可以棘手,而且是非平凡的。但是,大多数相关方法都是为在特定的应用程序方案中预测非常短的序列时间序列而设计的,在特定的应用程序场景中,该方法无法满足方案和预测实用应用长度的差异要求。为了解决这些问题,我们提出了一个名为Odformer的类似变压器的模型,具有两个显着特征:(i)新型的OD注意机制,该机制捕获了相同起源(目的地)之间的特殊空间依赖性,可大大提高与捕获OD区域之间空间依赖关系的2D-GCN结合后,预测交叉应用方案的模型。 (ii)一个时期的自我注意力,可以有效地预测长序列OD矩阵序列,同时适应不同情况下的周期性差异。在三个应用程序背景(即运输流量,IP骨干网络流量,人群流)中进行的慷慨实验表明,我们的方法的表现优于最新方法。
translated by 谷歌翻译
多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,时空图神经网络(STGNN)已成为越来越流行的MTS预测方法。 STGNN通过图神经网络和顺序模型共同对MTS的空间和时间模式进行建模,从而显着提高了预测准确性。但是受模型复杂性的限制,大多数STGNN仅考虑短期历史MTS数据,例如过去一个小时的数据。但是,需要根据长期的历史MTS数据来分析时间序列的模式及其之间的依赖关系(即时间和空间模式)。为了解决这个问题,我们提出了一个新颖的框架,其中STGNN通过可扩展的时间序列预训练模型(步骤)增强。具体而言,我们设计了一个预训练模型,以从非常长期的历史时间序列(例如,过去两周)中有效地学习时间模式并生成细分级表示。这些表示为短期时间序列输入到STGNN提供了上下文信息,并促进了时间序列之间的建模依赖关系。三个公共现实世界数据集的实验表明,我们的框架能够显着增强下游STGNN,并且我们的训练前模型可恰当地捕获时间模式。
translated by 谷歌翻译