逆向工程集成电路网表是一个强大的工具,可以帮助检测恶意逻辑和抵消设计盗版。该域中的一个关键挑战是设计中数据路径和控制逻辑寄存器的正确分类。我们展示了一种新的基于学习的寄存器分类方法,该方法将图形神经网络(GNN)与结构分析相结合,以将寄存器分类在电路中,以高精度和概括不同的设计。 GNN在处理电路网表方面特别有效,以便在节点和它们的邻域的利用,以便学习有效地区分不同类型的节点。结构分析可以进一步通过GNN将被错误分类错误分类的寄存器通过分析在网表图中的强连接的组件来纠正为状态寄存器。一组基准的数值结果表明,Reignn可以平均实现96.5%的平衡准确性和不同设计的灵敏度97.7%。
translated by 谷歌翻译
Graph neural networks (GNNs) have pushed the state-of-the-art (SOTA) for performance in learning and predicting on large-scale data present in social networks, biology, etc. Since integrated circuits (ICs) can naturally be represented as graphs, there has been a tremendous surge in employing GNNs for machine learning (ML)-based methods for various aspects of IC design. Given this trajectory, there is a timely need to review and discuss some powerful and versatile GNN approaches for advancing IC design. In this paper, we propose a generic pipeline for tailoring GNN models toward solving challenging problems for IC design. We outline promising options for each pipeline element, and we discuss selected and promising works, like leveraging GNNs to break SOTA logic obfuscation. Our comprehensive overview of GNNs frameworks covers (i) electronic design automation (EDA) and IC design in general, (ii) design of reliable ICs, and (iii) design as well as analysis of secure ICs. We provide our overview and related resources also in the GNN4IC hub at https://github.com/DfX-NYUAD/GNN4IC. Finally, we discuss interesting open problems for future research.
translated by 谷歌翻译
在电子设计自动化(EDA)领域的应用深度学习(DL)技术已成为近年来的趋势主题。大多数现有解决方案适用于开发的DL模型来解决特定的EDA问题。在展示有希望的结果的同时,他们需要仔细模型调整每个问题。关于\ Texit的基本问题{“如何获得一般和有效的电路神经表征?”}尚未得到解答。在这项工作中,我们迈出了解决这个问题的第一步。我们提出\ Textit {DeepGate},一种新颖的表示学习解决方案,其有效地将电路的逻辑功能和结构信息嵌入为每个门上的向量。具体而言,我们将电路转换为统一和倒换图格式,以便学习和使用信号概率作为Deplegate中的监控任务。然后,我们介绍一种新的图形神经网络,该网络神经网络在实际电路中使用强烈的电感偏差作为信号概率预测的学习前沿。我们的实验结果表明了深度的功效和泛化能力。
translated by 谷歌翻译
过程变化和设备老化对电路设计师构成了深刻的挑战。如果不对变化对电路路径的延迟的影响进行精确理解,无法正确估计避免定时违规行为的后卫带。对于先进的技术节点,此问题加剧了,其中晶体管尺寸达到原子水平,并且已建立的边缘受到严格限制。因此,传统的最坏情况分析变得不切实际,导致无法忍受的性能开销。相反,过程变化/衰老感知的静态时序分析(STA)为设计师提供了准确的统计延迟分布。然后可以有效地估计小但足够的时正时标志。但是,这样的分析是昂贵的,因为它需要密集的蒙特卡洛模拟。此外,它需要访问基于机密的物理老化模型来生成STA所需的标准细胞库。在这项工作中,我们采用图形神经网络(GNN)来准确估计过程变化和设备衰老对电路中任何路径延迟的影响。我们提出的GNN4REL框架使设计师能够执行快速准确的可靠性估计,而无需访问晶体管模型,标准细胞库甚至STA;这些组件均通过铸造厂的训练纳入GNN模型中。具体而言,对GNN4REL进行了针对工业14NM测量数据进行校准的FinFET技术模型的培训。通过我们对EPFL和ITC-99基准以及RISC-V处理器进行的广泛实验,我们成功估计了所有路径的延迟降级(尤其是在几秒钟内),平均绝对误差降至0.01个百分点。
translated by 谷歌翻译
综合电路(IC)供应链的全球化已将大部分设计,制造和测试过程从单一的受信任实体转移到全球各种不信任的第三方实体。使用不信任的第三方知识产权(3PIP)的风险是,对手可能会插入称为硬件木马(HTS)的恶意修改。这些HT可以损害完整性,恶化性能,拒绝服务并改变设计的功能。尽管文献中已经提出了许多HT检测方法,但HT定位的关键任务被忽略了。此外,一些现有的HT本地化方法具有多个弱点:依赖黄金参考,无法概括所有类型的HT,缺乏可扩展性,低位置分辨率以及手动功能工程/属性定义。为了克服他们的缺点,我们通过利用图形卷积网络(GCN)提出了一种新颖的,无参考的HT定位方法。在这项工作中,我们将电路设计转换为其内在数据结构,绘制并提取节点属性。之后,图形卷积对节点进行自动提取,以将节点分类为特洛伊木马或良性。我们的自动化方法不会通过手动代码审查来负担设计师的负担。它以99.6%的精度,93.1%的F1得分和假阳性速率低于0.009%的速率定位特洛伊木马信号。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
目前有技术节点缩放,早期设计阶段的精确预测模型可以显着降低设计周期。特别是在逻辑合成期间,预测由于逻辑组合不当导致的细胞拥塞可以减少后续物理实现的负担。已经尝试使用图形神经网络(GNN)技术来解决逻辑合成阶段的拥塞预测。然而,它们需要信息性小区特征来实现合理的性能,因为GNN的核心概念构建在消息通过框架上,这在早期逻辑合成阶段将是不切实际的。为了解决这个限制,我们提出了一个框架,可以直接学习给定网表的嵌入式,以提高节点功能的质量。基于流行的随机播放的嵌入方法,如Node2VEC,LINE和DeadWalk遭受横绘对齐和普遍性的问题,以取消差价,效率低于性能和成本耗费的运行时。在我们的框架中,我们介绍了一种卓越的替代方案,可以获得可以使用矩阵分解方法概括在网表图中的节点嵌入。我们在子图水平上提出了一种高效的迷你批量培训方法,可以保证并行培训并满足大规模网手册的内存限制。我们呈现利用开源EDA工具的结果,如Dreamplace和OpenORAD框架上的各种公开的电路。通过将学习的嵌入在网手册的顶部与GNN结合,我们的方法可以提高预测性能,推广到新电路线,并且在训练中具有高效,潜在节省超过$ 90 \%运行时。
translated by 谷歌翻译
片上系统(SoC)开发人员越来越依赖于从不受信任的第三方供应商获得的预先验证的硬件知识产权(IP)块。这些IP可能包含隐藏的恶意功能或硬件特洛伊木马,以损害制造的SOC的安全性。最近,监督机器学习(ML)技术在第三方IPS(3PIPS)中识别潜在特洛伊木马网的蚊帐具有有前途的能力。但是,他们带来了几项重大挑战。首先,他们并没有引导我们最佳选择可靠地涵盖各种特洛伊木马的特点。其次,它们需要多个无特洛伊木马/可信设计来插入已知的特洛伊木马并生成培训的模型。即使一系列可靠的设计可用于培训,嫌疑IP也可能与该集合的可信设计截然不同,这可能会对验证结果产生负面影响。第三,这些技术仅识别一套需要手动干预以了解潜在威胁的嫌疑人的特洛伊木网。在本文中,我们提供了VIPR,一个系统的机器学习(ML)基于3PP的信任验证解决方案,用于消除对培训的可信设计的需求。我们介绍了一个全面的框架,相关算法,以及用于获得最佳特征的刀具流,培训目标机器学习模型,检测嫌疑网,并从嫌疑网识别特洛伊木马电路。我们评估了几种信任集线器特洛伊木马基准测试的框架,并在不同培训的型号,选择功能和后处理技术方面提供了对检测性能的比较分析。所提出的后处理算法将误报可降低至92.85%。
translated by 谷歌翻译
测试点插入(TPI)是一种可增强可测试性的技术,特别是对于逻辑内置的自我测试(LBIST),由于其相对较低的故障覆盖率。在本文中,我们提出了一种基于DeepTPI的Deep Greatherions学习(DRL)的新型TPI方法。与以前基于学习的解决方案将TPI任务作为监督学习问题不同,我们训练了一种新颖的DRL代理,即实例化为图神经网络(GNN)和深Q学习网络(DQN)的组合,以最大程度地提高测试覆盖范围改进。具体而言,我们将电路模型为有向图并设计基于图的值网络,以估计插入不同测试点的动作值。 DRL代理的策略定义为选择具有最大值的操作。此外,我们将预先训练模型的一般节点嵌入到增强节点特征,并为值网络提出专用的可验证性注意力机制。与商业DFT工具相比,具有各种尺度的电路的实验结果表明,DEEPTPI显着改善了测试覆盖范围。这项工作的代码可在https://github.com/cure-lab/deeptpi上获得。
translated by 谷歌翻译
高吞吐量数据处理应用的高效硬件加速器设计,例如深度神经网络,是计算机架构设计中有挑战性的任务。在这方面,高级合成(HLS)作为快速原型设计的解决方案,从应用程序计算流程的行为描述开始。这种设计空间探索(DSE)旨在识别帕累托最佳的合成配置,其穷举搜索由于设计空间维度和合成过程的禁止计算成本而往往不可行。在该框架内,我们通过提出在文献中,有效和有效地解决了设计问题图形神经网络,该神经网络共同预测了合成的行为规范的加速性能和硬件成本给出了优化指令。考虑到性能和成本估计,学习模型可用于通过引导DSE来快速接近帕累托曲线。所提出的方法优于传统的HLS驱动DSE方法,通过考虑任意长度的计算机程序和输入的不变特性。我们提出了一种新颖的混合控制和数据流图表示,可以在不同硬件加速器的规格上培训图形神经网络;该方法自然地转移到解除数据处理应用程序。此外,我们表明我们的方法实现了与常用模拟器的预测准确性相当,而无需访问HLS编译器和目标FPGA的分析模型,同时是更快的数量级。最后,通过微调来自新目标域的少量样本,可以在未开发的配置空间中解放所学习的表示。
translated by 谷歌翻译
本文介绍了基于图形神经网络(GNN)的新的网络入侵检测系统(NID)。 GNN是深度神经网络的一个相对较新的子领域,可以利用基于图形数据的固有结构。 NIDS的培训和评估数据通常表示为流记录,其可以自然地以图形格式表示。这建立了探索网络入侵检测GNN的潜在和动力,这是本文的重点。基于机器的基于机器的NIDS的目前的研究只考虑网络流动,而不是考虑其互连的模式。这是检测复杂的物联网网络攻击的关键限制,例如IOT设备推出的DDOS和分布式端口扫描攻击。在本文中,我们提出了一种克服了这种限制的GNN方法,并允许捕获图形的边缘特征以及IOT网络中网络异常检测的拓扑信息。据我们所知,我们的方法是第一次成功,实用,广泛地评估应用图形神经网络对使用流基于流的数据的网络入侵检测问题的方法。我们在最近的四个NIDS基准数据集上进行了广泛的实验评估,表明我们的方法在关键分类指标方面占据了最先进的,这证明了网络入侵检测中GNN的潜力,并提供了进一步研究的动机。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
图形神经网络(GNNS)依赖于图形结构来定义聚合策略,其中每个节点通过与邻居的信息组合来更新其表示。已知GNN的限制是,随着层数的增加,信息被平滑,压扁并且节点嵌入式变得无法区分,对性能产生负面影响。因此,实用的GNN模型雇用了几层,只能在每个节点周围的有限邻域利用图形结构。不可避免地,实际的GNN不会根据图的全局结构捕获信息。虽然有几种研究GNNS的局限性和表达性,但是关于图形结构数据的实际应用的问题需要全局结构知识,仍然没有答案。在这项工作中,我们通过向几个GNN模型提供全球信息并观察其对下游性能的影响来认证解决这个问题。我们的研究结果表明,全球信息实际上可以为共同的图形相关任务提供显着的好处。我们进一步确定了一项新的正规化策略,导致所有考虑的任务的平均准确性提高超过5%。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
本文提出了一种基于图形神经网络(GNN)的新的Android恶意软件检测方法,并具有跳跃知识(JK)。Android函数呼叫图(FCGS)由一组程序功能及其术间调用组成。因此,本文提出了一种基于GNN的方法,用于通过捕获有意义的心理内呼叫路径模式来检测Android恶意软件的检测方法。此外,采用跳跃知识技术来最大程度地减少过度平滑问题的效果,这在GNN中很常见。该方法已使用两个基准数据集对所提出的方法进行了广泛的评估。结果表明,与关键分类指标相比,与最先进的方法相比,我们的方法的优越性,这证明了GNN在Android恶意软件检测和分类中的潜力。
translated by 谷歌翻译
图形神经网络(GNN)在处理图形结构数据的问题上表现出巨大的希望。 GNNS的独特点之一是它们的灵活性适应多个问题,这不仅导致广泛的适用性,而且在为特定问题找到最佳模型或加速技术时会带来重要的挑战。此类挑战的一个例子在于一个事实,即GNN模型或加速技术的准确性或有效性通常取决于基础图的结构。在本文中,为了解决图形依赖性加速的问题,我们提出了预后,这是一个数据驱动的模型,可以通过检查输入图来预测给定GNN模型在任意特征图上运行的GNN训练时间指标。这样的预测是基于先前使用多样化的合成图数据集经过离线训练的回归做出的。在实践中,我们的方法允许做出明智的决定,以用于特定问题的设计。在本文中,为特定用例定义并应用了构建预后的方法,其中有助于确定哪种图表更好。我们的结果表明,预后有助于在多种广泛使用的GNN模型(例如GCN,GIN,GAT或GRAPHSAGE)中随机选择图表的平均速度为1.22倍。
translated by 谷歌翻译
在逻辑合成阶段,需要将合成工具中的结构转换组合为优化序列,并在电路上作用以满足指定的电路区域和延迟。但是,逻辑合成优化序列是耗时的运行时间,并预测结果(QOR)与电路的合成优化序列的质量(QOR)可以帮助工程师更快地找到更好的优化序列。在这项工作中,我们提出了一种深度学习方法,以预测看不见的电路优化序列对的QOR。具体而言,结构转换通过嵌入方法和高级自然语言处理(NLP)技术(变压器)转换为向量,以提取优化序列的特征。此外,为了使模型的预测过程从电路到电路进行推广,电路的图表示为邻接矩阵和特征矩阵。图神经网络(GNN)用于提取电路的结构特征。对于此问题,使用了变压器和三个典型的GNN。此外,变压器和GNN被用作未见电路优化序列的QOR预测的联合学习政策。由变压器和GNN组合产生的方法基准测试。实验结果表明,变压器和图形的联合学习可获得最佳结果。预测结果的平均绝对误差(MAE)为0.412。
translated by 谷歌翻译
b \“无限单词上的uchi automata提出了许多有趣的问题,并经常用于程序验证和模型检查。b \ b \ b \'uchi automata在计算上很难可能比使用传统算法更有效。由于B \“ Uchi Automata可以用图表示,因此图神经网络是这种基于学习的分析的自然选择。在本文中,我们演示了如何使用图形神经网络可靠地预测B \'uchi的基本属性。自动培训自动生成随机自动机数据集时。
translated by 谷歌翻译
图表神经网络(GNNS)最近在人工智能(AI)领域的普及,这是由于它们作为输入数据相对非结构化数据类型的独特能力。尽管GNN架构的一些元素在概念上类似于传统神经网络(以及神经网络变体)的操作中,但是其他元件代表了传统深度学习技术的偏离。本教程通过整理和呈现有关GNN最常见和性能变种的动机,概念,数学和应用的细节,将GNN的权力和新颖性暴露给AI从业者。重要的是,我们简明扼要地向实际示例提出了本教程,从而为GNN的主题提供了实用和可访问的教程。
translated by 谷歌翻译