测试点插入(TPI)是一种可增强可测试性的技术,特别是对于逻辑内置的自我测试(LBIST),由于其相对较低的故障覆盖率。在本文中,我们提出了一种基于DeepTPI的Deep Greatherions学习(DRL)的新型TPI方法。与以前基于学习的解决方案将TPI任务作为监督学习问题不同,我们训练了一种新颖的DRL代理,即实例化为图神经网络(GNN)和深Q学习网络(DQN)的组合,以最大程度地提高测试覆盖范围改进。具体而言,我们将电路模型为有向图并设计基于图的值网络,以估计插入不同测试点的动作值。 DRL代理的策略定义为选择具有最大值的操作。此外,我们将预先训练模型的一般节点嵌入到增强节点特征,并为值网络提出专用的可验证性注意力机制。与商业DFT工具相比,具有各种尺度的电路的实验结果表明,DEEPTPI显着改善了测试覆盖范围。这项工作的代码可在https://github.com/cure-lab/deeptpi上获得。
translated by 谷歌翻译
在电子设计自动化(EDA)领域的应用深度学习(DL)技术已成为近年来的趋势主题。大多数现有解决方案适用于开发的DL模型来解决特定的EDA问题。在展示有希望的结果的同时,他们需要仔细模型调整每个问题。关于\ Texit的基本问题{“如何获得一般和有效的电路神经表征?”}尚未得到解答。在这项工作中,我们迈出了解决这个问题的第一步。我们提出\ Textit {DeepGate},一种新颖的表示学习解决方案,其有效地将电路的逻辑功能和结构信息嵌入为每个门上的向量。具体而言,我们将电路转换为统一和倒换图格式,以便学习和使用信号概率作为Deplegate中的监控任务。然后,我们介绍一种新的图形神经网络,该网络神经网络在实际电路中使用强烈的电感偏差作为信号概率预测的学习前沿。我们的实验结果表明了深度的功效和泛化能力。
translated by 谷歌翻译
6G将移动移动网络以增加复杂程度。为了处理这种复杂性,网络参数的优化是确保高性能和及时适应动态网络环境的关键。天线倾斜的优化提供了一种实用且具有成本效益的方法,以提高网络中的覆盖率和容量。通过学习自适应策略优于传统的倾斜优化方法,基于强化学习(RL)的先前方法对倾斜优化具有很大的通知。但是,大多数现有的RL方法都基于单个小区特征表示,它无法完全表征代理状态,从而导致次优的性能。此外,由于国家行动爆炸和泛化能力,大多数此类方法缺乏可扩展性。在本文中,我们提出了一个关于倾斜优化的Q-Learnal(GaQ)算法的图表。 GaQ依赖于图形注意机制来选择相关的邻居信息,提高代理状态表示,并根据使用深Q-Network(DQN)的观察历史更新倾斜控制策略。我们表明GAQ有效地捕获重要的网络信息,并通过大边距与本地信息优于标准DQN。此外,我们展示了概括到不同尺寸和密度的网络部署的能力。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
Graph mining tasks arise from many different application domains, ranging from social networks, transportation to E-commerce, etc., which have been receiving great attention from the theoretical and algorithmic design communities in recent years, and there has been some pioneering work employing the research-rich Reinforcement Learning (RL) techniques to address graph data mining tasks. However, these graph mining methods and RL models are dispersed in different research areas, which makes it hard to compare them. In this survey, we provide a comprehensive overview of RL and graph mining methods and generalize these methods to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method descriptions, open-source codes, and benchmark datasets of GRL methods. Furthermore, we propose important directions and challenges to be solved in the future. As far as we know, this is the latest work on a comprehensive survey of GRL, this work provides a global view and a learning resource for scholars. In addition, we create an online open-source for both interested scholars who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
translated by 谷歌翻译
集成电路(IC)的测试是一个非常昂贵的过程,但在确定IC的缺陷水平方面也是最重要的过程。 IC中的制造缺陷是使用符合故障模型对其进行建模的。拟合型号的模型涵盖了制造过程中发生的大多数物理故障。由于半导体技术的发展,功能尺寸降低,缺陷的尺寸也越来越小。这些难以检测的缺陷的测试是使用确定性测试生成(DTG)算法生成的。我们的工作旨在降低面向路径的决策成本:podem(DTG算法)而不损害测试质量。我们训练了一个元预测器,以选择给定电路和目标网的最佳模型。该合奏选择具有95%精度的最佳概率预测模型。从其CPU时间角度来看,这导致了回溯决策的数量减少,Podem的表现更好。我们表明,我们的ML引导的PoDEM算法具有元预测器的表现,其质量超过34%,而其他最先进的ML引导算法则至少高于ISCAS85基准电路的15%。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
逆向工程集成电路网表是一个强大的工具,可以帮助检测恶意逻辑和抵消设计盗版。该域中的一个关键挑战是设计中数据路径和控制逻辑寄存器的正确分类。我们展示了一种新的基于学习的寄存器分类方法,该方法将图形神经网络(GNN)与结构分析相结合,以将寄存器分类在电路中,以高精度和概括不同的设计。 GNN在处理电路网表方面特别有效,以便在节点和它们的邻域的利用,以便学习有效地区分不同类型的节点。结构分析可以进一步通过GNN将被错误分类错误分类的寄存器通过分析在网表图中的强连接的组件来纠正为状态寄存器。一组基准的数值结果表明,Reignn可以平均实现96.5%的平衡准确性和不同设计的灵敏度97.7%。
translated by 谷歌翻译
为了其优势在GPU加速和更少依赖人类专家的优势,机器学习一直是解决放置和路由问题的新兴工具,作为现代芯片设计流程中的两个关键步骤。仍处于早期阶段,存在基本问题:可扩展性,奖励设计和端到端学习范式等,以实现端到端的放置学习,我们首先提出了一个由DeepPlace进行的联合学习方法进行放置宏观和标准电池,通过用基于梯度的优化方案的增强学习集成。为了进一步利用随后的路由任务进行展开,我们还通过加强学习开发联合学习方法来满足宏放置和路由,称为DeepPR。我们(钢筋)学习范例的一个关键设计涉及多视图嵌入模型来编码输入宏的全局图级别和本地节点级别信息。此外,设计随机网络蒸馏以鼓励探索。公共芯片设计基准的实验表明,我们的方法可以有效地从经验中学习,并在几小时内为邮政标准单元放置提供中间位置进行培训。
translated by 谷歌翻译
社交机器人被称为社交网络上的自动帐户,这些帐户试图像人类一样行事。尽管图形神经网络(GNNS)已大量应用于社会机器人检测领域,但大量的领域专业知识和先验知识大量参与了最先进的方法,以设计专门的神经网络体系结构,以设计特定的神经网络体系结构。分类任务。但是,在模型设计中涉及超大的节点和网络层,通常会导致过度平滑的问题和缺乏嵌入歧视。在本文中,我们提出了罗斯加斯(Rosgas),这是一种新颖的加强和自我监督的GNN Architecture搜索框架,以适应性地指出了最合适的多跳跃社区和GNN体系结构中的层数。更具体地说,我们将社交机器人检测问题视为以用户为中心的子图嵌入和分类任务。我们利用异构信息网络来通过利用帐户元数据,关系,行为特征和内容功能来展示用户连接。 Rosgas使用多代理的深钢筋学习(RL)机制来导航最佳邻域和网络层的搜索,以分别学习每个目标用户的子图嵌入。开发了一种用于加速RL训练过程的最接近的邻居机制,Rosgas可以借助自我监督的学习来学习更多的判别子图。 5个Twitter数据集的实验表明,Rosgas在准确性,训练效率和稳定性方面优于最先进的方法,并且在处理看不见的样本时具有更好的概括。
translated by 谷歌翻译
Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.
translated by 谷歌翻译
Quantum Computing在古典计算机上解决困难的计算任务的显着改进承诺。然而,为实际使用设计量子电路不是琐碎的目标,并且需要专家级知识。为了帮助这一努力,提出了一种基于机器学习的方法来构建量子电路架构。以前的作品已经证明,经典的深度加强学习(DRL)算法可以成功构建量子电路架构而没有编码的物理知识。但是,这些基于DRL的作品不完全在更换设备噪声中的设置,从而需要大量的培训资源来保持RL模型最新。考虑到这一点,我们持续学习,以提高算法的性能。在本文中,我们介绍了深度Q-Learning(PPR-DQL)框架的概率策略重用来解决这个电路设计挑战。通过通过各种噪声模式进行数值模拟,我们证明了具有PPR的RL代理能够找到量子栅极序列,以比从划痕训练的代理更快地生成双量标铃声状态。所提出的框架是一般的,可以应用于其他量子栅极合成或控制问题 - 包括量子器件的自动校准。
translated by 谷歌翻译
过程变化和设备老化对电路设计师构成了深刻的挑战。如果不对变化对电路路径的延迟的影响进行精确理解,无法正确估计避免定时违规行为的后卫带。对于先进的技术节点,此问题加剧了,其中晶体管尺寸达到原子水平,并且已建立的边缘受到严格限制。因此,传统的最坏情况分析变得不切实际,导致无法忍受的性能开销。相反,过程变化/衰老感知的静态时序分析(STA)为设计师提供了准确的统计延迟分布。然后可以有效地估计小但足够的时正时标志。但是,这样的分析是昂贵的,因为它需要密集的蒙特卡洛模拟。此外,它需要访问基于机密的物理老化模型来生成STA所需的标准细胞库。在这项工作中,我们采用图形神经网络(GNN)来准确估计过程变化和设备衰老对电路中任何路径延迟的影响。我们提出的GNN4REL框架使设计师能够执行快速准确的可靠性估计,而无需访问晶体管模型,标准细胞库甚至STA;这些组件均通过铸造厂的训练纳入GNN模型中。具体而言,对GNN4REL进行了针对工业14NM测量数据进行校准的FinFET技术模型的培训。通过我们对EPFL和ITC-99基准以及RISC-V处理器进行的广泛实验,我们成功估计了所有路径的延迟降级(尤其是在几秒钟内),平均绝对误差降至0.01个百分点。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
回溯搜索算法通常用于解决约束满足问题(CSP)。回溯搜索的效率在很大程度上取决于可变排序启发式。目前,最常用的启发式是根据专家知识进行手工制作的。在本文中,我们提出了一种基于深度的加强学习方法,可以自动发现新的变量订购启发式,更好地适用于给定类CSP实例。我们显示,直接优化搜索成本很难用于自动启动,并建议优化在搜索树中到达叶节点的预期成本。为了捕获变量和约束之间的复杂关系,我们设计基于图形神经网络的表示方案,可以处理具有不同大小和约束的CSP实例。随机CSP实例上的实验结果表明,学习的政策在最小化搜索树大小的方面优于古典手工制作的启发式,并且可以有效地推广到比训练中使用的实例。
translated by 谷歌翻译
Quantum computing (QC) promises significant advantages on certain hard computational tasks over classical computers. However, current quantum hardware, also known as noisy intermediate-scale quantum computers (NISQ), are still unable to carry out computations faithfully mainly because of the lack of quantum error correction (QEC) capability. A significant amount of theoretical studies have provided various types of QEC codes; one of the notable topological codes is the surface code, and its features, such as the requirement of only nearest-neighboring two-qubit control gates and a large error threshold, make it a leading candidate for scalable quantum computation. Recent developments of machine learning (ML)-based techniques especially the reinforcement learning (RL) methods have been applied to the decoding problem and have already made certain progress. Nevertheless, the device noise pattern may change over time, making trained decoder models ineffective. In this paper, we propose a continual reinforcement learning method to address these decoding challenges. Specifically, we implement double deep Q-learning with probabilistic policy reuse (DDQN-PPR) model to learn surface code decoding strategies for quantum environments with varying noise patterns. Through numerical simulations, we show that the proposed DDQN-PPR model can significantly reduce the computational complexity. Moreover, increasing the number of trained policies can further improve the agent's performance. Our results open a way to build more capable RL agents which can leverage previously gained knowledge to tackle QEC challenges.
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译
虽然可以通过对位渠道进行排序来有效地实现连续策略解码的极性代码,但以有效且可扩展的方式为连续策略列表(SCL)解码找到最佳的极性代码结构,但仍在等待研究。本文提出了一个基于图形神经网络(GNN)基于迭代消息通话(IMP)算法的强化算法,以解决SCL解码的极性代码构建问题。该算法仅在极地代码的生成器矩阵诱导的图的局部结构上运行。 IMP模型的大小独立于区块长度和代码速率,从而使其可扩展到具有长块长度的极性代码。此外,单个受过训练的IMP模型可以直接应用于广泛的目标区块长度,代码速率和渠道条件,并且可以生成相应的极性代码,而无需单独的训练。数值实验表明,IMP算法找到了极性代码构建体,这些构建体在环状划分 - 检查辅助辅助AD的SCL(CA-SCL)解码下显着优于经典构建体。与针对SCL/CA-SCL解码量身定制的其他基于学习的施工方法相比,IMP算法构建具有可比或较低帧错误率的极地代码,同时通过消除每个目标阻止长度的单独训练的需求,从而大大降低了训练的复杂性,代码速率和通道状况。
translated by 谷歌翻译
在过去的十年中,深入的强化学习(RL)已经取得了长足的进步。同时,最先进的RL算法在培训时间融合方面需要大量的计算预算。最近的工作已经开始通过量子计算的角度来解决这个问题,这有望为几项传统上的艰巨任务做出理论上的速度。在这项工作中,我们研究了一类混合量子古典RL算法,我们共同称为变异量子Q-NETWORKS(VQ-DQN)。我们表明,VQ-DQN方法受到导致学习政策分歧的不稳定性的约束,研究了基于经典模拟的既定结果的重复性,并执行系统的实验以识别观察到的不稳定性的潜在解释。此外,与大多数现有的量子增强学习中现有工作相反,我们在实际量子处理单元(IBM量子设备)上执行RL算法,并研究模拟和物理量子系统之间因实施不足而进行的行为差异。我们的实验表明,与文献中相反的主张相反,与经典方法相比,即使在没有物理缺陷的情况下进行模拟,也不能最终决定是否已知量子方法,也可以提供优势。最后,我们提供了VQ-DQN作为可再现的测试床的强大,通用且经过充分测试的实现,以实现未来的实验。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译