从欧几里德绿色的功能重建光谱函数是许多身体物理中的重要逆问题。然而,在具有嘈杂的绿色功能的现实系统中证明了反演。在这封信中,我们提出了一种自动分化(AD)框架作为来自传播者可观察到的光谱重建的通用工具。利用神经网络的正则化作为光谱功能的非局部平滑度调节器,我们代表神经网络的光谱功能,并使用传播者的重建误差来优化无限制的网络参数。在培训过程中,除了光谱函数的正面明确形式外,没有嵌入到神经网络中的其他显式物理前沿。通过相对熵和均方误差来评估重建性能,对于两个不同的网络表示。与最大熵方法相比,广告框架在大噪声情况下实现了更好的性能。注意,引入非局部正则化的自由是本框架的固有优势,并且可能导致求解逆问题的显着改进。
translated by 谷歌翻译
从欧几里德绿色函数中重建频谱函数是物理学中的重要逆问题。特定物理系统的先验知识通常提供了用于求解不良问题的基本正则化方案。针对这一点,我们提出了一种自动差异框架作为从可观察数据重建的通用工具。我们代表神经网络的光谱,并将Chi-Square设置为损耗功能,以优化反向自动分化的参数。在培训过程中,除了正定的形式之外,没有明确的物理预先嵌入神经网络。通过Kullback-Leibler(KL)发散和均方误差(MSE)进行评估重建精度,在多个噪声水平。应当注意,自动差分框架和引入正则化的自由是本方法的固有优势,可能导致在未来解决逆问题的改进。
translated by 谷歌翻译
我们研究了通过机器学习从欧几里得相关函数重建光谱函数的逆问题。我们提出了一个新型的神经网络SVAE,该网络基于变异自动编码器(VAE),可以自然应用于逆问题。 SVAE的突出特征是,作为损失函数中的先验信息包含了频谱函数的地面真实值的香农 - jaynes熵项,要最小化。我们使用高斯混合模型产生的一般光谱函数训练网络。作为一项测试,我们使用由一个由一个共振峰制成的四种不同类型的物理动机函数产生的相关器,连续项和使用非相关性QCD获得的扰动光谱函数。从模拟数据测试我们发现,在大多数情况下,SVAE与重建光谱函数质量的最大熵方法(MEM)相媲美,甚至在光谱函数具有尖峰的情况下且数据数量不足的情况下,SVAE与MEM的表现相当。相关器中的点。通过在淬火晶格QCD中获得的charmonium的时间相关函数应用于$ 128^3 \ times96 $ lattices和$ 128^3 \ times48 $ lattices,我们找到了$ 128^3 \ times96 $ lattices in 0.75 $ t_c $ on 0.75 $ t_c $ on 0.75 $ t_c $,我们发现,我们找到了,我们找到了,我们找到从SVAE和MEM提取的$ \ eta_c $的共振峰值对晶格模拟中采用的时间方向($ n_ \ tau $)的点数具有很大的依赖为了解决$ \ eta_c $的命运为1.5 $ t_c $。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
Reconstructing spectral functions from propagator data is difficult as solving the analytic continuation problem or applying an inverse integral transformation are ill-conditioned problems. Recent work has proposed using neural networks to solve this problem and has shown promising results, either matching or improving upon the performance of other methods. We generalize this approach by not only reconstructing spectral functions, but also (possible) pairs of complex poles or an infrared (IR) cutoff. We train our network on physically motivated toy functions, examine the reconstruction accuracy and check its robustness to noise. Encouraging results are found on both toy functions and genuine lattice QCD data for the gluon propagator, suggesting that this approach may lead to significant improvements over current state-of-the-art methods.
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
放射造影通常用于探测动态系统中的复杂,不断发展的密度字段,以便在潜在的物理学中实现进入洞察力。该技术已用于许多领域,包括材料科学,休克物理,惯性监禁融合和其他国家安全应用。然而,在许多这些应用中,噪声,散射,复杂光束动力学等的并发症防止了密度的重建足以足以识别具有足够置信度的底层物理。因此,来自静态/动态射线照相的密度重建通常限于在许多这些应用中识别诸如裂缝和空隙的不连续特征。在这项工作中,我们提出了一种从基本上重建密度的基本上新的射线照片序列的密度。仅使用射线照相识别的稳健特征,我们将它们与使用机器学习方法的底层流体动力方程组合,即条件生成对冲网络(CGAN),以从射线照片的动态序列确定密度字段。接下来,我们寻求通过参数估计和投影的过程进一步提高ML的密度重建的流体动力学一致性,并进入流体动力歧管。在这种情况下,我们注意到,训练数据给出的流体动力歧管在被认为的参数空间中给出的测试数据是用于预测的稳定性的诊断,并用于增强培训数据库,期望后者将进一步降低未来的密度重建错误。最后,我们展示了这种方法优于传统的射线照相重建在捕获允许的流体动力学路径中的能力,即使存在相对少量的散射。
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们介绍了Netket的版本3,机器学习工具箱适用于许多身体量子物理学。Netket围绕神经网络量子状态构建,并为其评估和优化提供有效的算法。这个新版本是基于JAX的顶部,一个用于Python编程语言的可差分编程和加速的线性代数框架。最重要的新功能是使用机器学习框架的简明符号来定义纯Python代码中的任意神经网络ANS \“凝固的可能性,这允许立即编译以及渐变的隐式生成自动化。Netket 3还带来了GPU和TPU加速器的支持,对离散对称组的高级支持,块以缩放多程度的自由度,Quantum动态应用程序的驱动程序,以及改进的模块化,允许用户仅使用部分工具箱是他们自己代码的基础。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
Holron光谱函数携带HADRONS的所有信息,并在欧几里德两点相关函数中编码。来自相关器的Holron谱函数的提取是典型的不良反问题,并且存在无限数量的解决问题。我们提出了一种基于变异自动编码器(VAE)和贝叶斯定理的新型神经网络(SVAE)。灵感来自最大熵方法(MEM),我们构建神经工作的损失函数,使其包括Shannon-Jaynes熵项和似然术语。然后训练SVAE以提供最可能的光谱功能。对于光谱函数的训练样本,我们使用了由高斯混合模型产生的一般光谱函数。在完成训练之后,我们通过输入光谱功能进行了模拟数据测试,其中包括1)仅包括一个自由连续体,2)仅具有共振峰,3)共振峰加上自由连续体和4)NRQCD激励的光谱功能。从模拟数据测试中,我们发现大多数情况下的SVAE与重建光谱函数的质量中的最大熵方法相当,并且在频谱函数具有尖锐峰的情况下甚至优于MEM,其中数据点数不足相关器。通过在0.75 $ T_C $ 128 ^ 3 \ times96 $格和$ 128 ^ 3 \ times48 $格子的0.75 $ t_c $ 0.75 $ t_c $ 0.75 $ t_c $ 128 ^ 3 \ times48 $格子的伪影片QCD中的催化力柱中的催化态频道中的催化力频道临时相关函数。从SVAE和MEM中提取的$ \ eta_c $的共振峰值对晶格模拟中采用的时间方向($ N_ \ TAU $)的点数大幅依赖,并且需要大于48美元的$ N_ \ TAU $大于48美元解决$ \ eta_c $的命运为1.5 $ t_c $。
translated by 谷歌翻译