在许多语音和音乐相关任务中,应用于音频的深度生成模型已经改善了最先进的最先进的语音和音乐相关的任务。然而,由于原始波形建模仍然是一个固有的困难任务,音频生成模型要么计算密集,依赖于低采样率,并复杂于控制或限制可能信号的性质。在这些模型中,变形自身偏析器(VAE)通过暴露潜在变量来控制生成,尽管它们通常遭受低合成质量。在本文中,我们介绍了一个实时音频变形式自动化器(RAVE),允许快速和高质量的音频波形合成。我们介绍了一种新型的两级培训程序,即表示学习和对抗性微调。我们表明,使用对潜伏空间的训练后分析允许直接控制重建保真度和表示紧凑性。通过利用原始波形的多频段分解,我们表明我们的模型是第一个能够生成48kHz音频信号,同时在标准膝上型计算机CPU上的实时运行20倍。我们使用定量和定性主观实验评估合成质量,并与现有模型相比,我们的方法的优越性。最后,我们呈现了我们模型的MigBre传输和信号压缩的应用。我们所有的源代码和音频示例都是公开的。
translated by 谷歌翻译
Previous works (Donahue et al., 2018a;Engel et al., 2019a) have found that generating coherent raw audio waveforms with GANs is challenging. In this paper, we show that it is possible to train GANs reliably to generate high quality coherent waveforms by introducing a set of architectural changes and simple training techniques. Subjective evaluation metric (Mean Opinion Score, or MOS) shows the effectiveness of the proposed approach for high quality mel-spectrogram inversion. To establish the generality of the proposed techniques, we show qualitative results of our model in speech synthesis, music domain translation and unconditional music synthesis. We evaluate the various components of the model through ablation studies and suggest a set of guidelines to design general purpose discriminators and generators for conditional sequence synthesis tasks. Our model is non-autoregressive, fully convolutional, with significantly fewer parameters than competing models and generalizes to unseen speakers for mel-spectrogram inversion. Our pytorch implementation runs at more than 100x faster than realtime on GTX 1080Ti GPU and more than 2x faster than real-time on CPU, without any hardware specific optimization tricks.
translated by 谷歌翻译
快速和用户控制的音乐生成可以实现创作或表演音乐的新颖方法。但是,最先进的音乐生成系统需要大量的数据和计算资源来培训,并且推断很慢。这使它们对于实时交互式使用不切实际。在这项工作中,我们介绍了Musika,Musika是一种音乐发电系统,可以使用单个消费者GPU在数百小时的音乐上进行培训,并且比消费者CPU上有任意长度的音乐的实时生成速度要快得多。我们首先学习具有对抗性自动编码器的光谱图和相位的紧凑型可逆表示,然后在此表示上训练生成性对抗网络(GAN)为特定的音乐领域训练。潜在坐标系可以并行生成任意长的摘录序列,而全局上下文向量使音乐可以在时间上保持风格连贯。我们执行定量评估,以评估生成的样品的质量,并展示钢琴和技术音乐生成的用户控制选项。我们在github.com/marcoppasini/musika上发布源代码和预估计的自动编码器重量,使得可以在几个小时内使用单个GPU的新音乐域中对GAN进行培训。
translated by 谷歌翻译
Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms. Although such methods improve the sampling efficiency and memory usage, their sample quality has not yet reached that of autoregressive and flow-based generative models. In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As speech audio consists of sinusoidal signals with various periods, we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality. A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the melspectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times faster than real-time on CPU with comparable quality to an autoregressive counterpart. IntroductionVoice is one of the most frequent and naturally used communication interfaces for humans. With recent developments in technology, voice is being used as a main interface in artificial intelligence (AI) voice assistant services such as Amazon Alexa, and it is also widely used in automobiles, smart homes and so forth. Accordingly, with the increase in demand for people to converse with machines, technology that synthesizes natural speech like human speech is being actively studied.Recently, with the development of neural networks, speech synthesis technology has made a rapid progress. Most neural speech synthesis models use a two-stage pipeline: 1) predicting a low resolution intermediate representation such as mel-spectrograms (
translated by 谷歌翻译
深度学习算法的兴起引领许多研究人员使用经典信号处理方法来发声。深度学习模型已经实现了富有富有的语音合成,现实的声音纹理和虚拟乐器的音符。然而,最合适的深度学习架构仍在调查中。架构的选择紧密耦合到音频表示。声音的原始波形可以太密集和丰富,用于深入学习模型,以有效处理 - 复杂性提高培训时间和计算成本。此外,它不代表声音以其所感知的方式。因此,在许多情况下,原始音频已经使用上采样,特征提取,甚至采用波形的更高级别的图示来转换为压缩和更有意义的形式。此外,研究了所选择的形式,另外的调节表示,不同的模型架构以及用于评估重建声音的许多度量的条件。本文概述了应用于使用深度学习的声音合成的音频表示。此外,它呈现了使用深度学习模型开发和评估声音合成架构的最重要方法,始终根据音频表示。
translated by 谷歌翻译
Learning useful representations without supervision remains a key challenge in machine learning. In this paper, we propose a simple yet powerful generative model that learns such discrete representations. Our model, the Vector Quantised-Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt rather than static. In order to learn a discrete latent representation, we incorporate ideas from vector quantisation (VQ). Using the VQ method allows the model to circumvent issues of "posterior collapse" --where the latents are ignored when they are paired with a powerful autoregressive decoder --typically observed in the VAE framework. Pairing these representations with an autoregressive prior, the model can generate high quality images, videos, and speech as well as doing high quality speaker conversion and unsupervised learning of phonemes, providing further evidence of the utility of the learnt representations.
translated by 谷歌翻译
近年来,由于其对复杂分布进行建模的能力,深层生成模型引起了越来越多的兴趣。在这些模型中,变异自动编码器已被证明是计算有效的,并且在多个领域中产生了令人印象深刻的结果。在这一突破之后,为了改善原始出版物而进行了广泛的研究,从而导致各种不同的VAE模型响应不同的任务。在本文中,我们介绍了Pythae,这是一个多功能的开源Python库,既可以提供统一的实现和专用框架,允许直接,可重现且可靠地使用生成自动编码器模型。然后,我们建议使用此库来执行案例研究基准测试标准,在其中我们介绍并比较了19个生成自动编码器模型,代表了下游任务的一些主要改进,例如图像重建,生成,分类,聚类,聚类和插值。可以在https://github.com/clementchadebec/benchmark_vae上找到开源库。
translated by 谷歌翻译
In this work, we propose DiffWave, a versatile diffusion probabilistic model for conditional and unconditional waveform generation. The model is non-autoregressive, and converts the white noise signal into structured waveform through a Markov chain with a constant number of steps at synthesis. It is efficiently trained by optimizing a variant of variational bound on the data likelihood. DiffWave produces high-fidelity audio in different waveform generation tasks, including neural vocoding conditioned on mel spectrogram, class-conditional generation, and unconditional generation. We demonstrate that DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44 versus 4.43), while synthesizing orders of magnitude faster. In particular, it significantly outperforms autoregressive and GAN-based waveform models in the challenging unconditional generation task in terms of audio quality and sample diversity from various automatic and human evaluations. 1 * Contributed to the work during an internship at Baidu Research, USA. 1 Audio samples are in: https://diffwave-demo.github.io/
translated by 谷歌翻译
尽管在基于生成的对抗网络(GAN)的声音编码器中,该模型在MEL频谱图中生成原始波形,但在各种录音环境中为众多扬声器合成高保真音频仍然具有挑战性。在这项工作中,我们介绍了Bigvgan,这是一款通用的Vocoder,在零照片环境中在各种看不见的条件下都很好地概括了。我们将周期性的非线性和抗氧化表现引入到发电机中,这带来了波形合成所需的感应偏置,并显着提高了音频质量。根据我们改进的生成器和最先进的歧视器,我们以最大的规模训练我们的Gan Vocoder,最高到1.12亿个参数,这在文献中是前所未有的。特别是,我们识别并解决了该规模特定的训练不稳定性,同时保持高保真输出而不过度验证。我们的Bigvgan在各种分布场景中实现了最先进的零拍性能,包括新的扬声器,新颖语言,唱歌声音,音乐和乐器音频,在看不见的(甚至是嘈杂)的录制环境中。我们将在以下网址发布我们的代码和模型:https://github.com/nvidia/bigvgan
translated by 谷歌翻译
生成的对抗网络最近在神经声音中表现出了出色的表现,表现优于最佳自动回归和基于流动的模型。在本文中,我们表明这种成功可以扩展到有条件音频的其他任务。特别是,在HIFI Vocoders的基础上,我们为带宽扩展和语音增强的新型HIFI ++一般框架提出了新颖的一般框架。我们表明,通过改进的生成器体系结构和简化的多歧视培训,HIFI ++在这些任务中的最先进的情况下表现更好或与之相提并论,同时花费大量的计算资源。通过一系列广泛的实验,我们的方法的有效性得到了验证。
translated by 谷歌翻译
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
translated by 谷歌翻译
音乐表达需要控制播放的笔记,以及如何执行它们。传统的音频合成器提供了详细的表达控制,但以现实主义的成本提供了详细的表达控制。黑匣子神经音频合成和连接采样器可以产生现实的音频,但有很少的控制机制。在这项工作中,我们介绍MIDI-DDSP乐器的分层模型,可以实现现实的神经音频合成和详细的用户控制。从可解释的可分辨率数字信号处理(DDSP)合成参数开始,我们推断出富有表现力性能的音符和高级属性(例如Timbre,Vibrato,Dynamics和Asticiculation)。这将创建3级层次结构(注释,性能,合成),提供个人选择在每个级别进行干预,或利用培训的前沿(表现给出备注,综合赋予绩效)进行创造性的帮助。通过定量实验和聆听测试,我们证明了该层次结构可以重建高保真音频,准确地预测音符序列的性能属性,独立地操纵给定性能的属性,以及作为完整的系统,从新颖的音符生成现实音频顺序。通过利用可解释的层次结构,具有多个粒度的粒度,MIDI-DDSP将门打开辅助工具的门,以赋予各种音乐体验的个人。
translated by 谷歌翻译
近年来,拥抱集群研究中的表演学习的深度学习技术引起了广泛的关注,产生了一个新开发的聚类范式,QZ。深度聚类(DC)。通常,DC型号大写AutoEncoders,以了解促进聚类过程的内在特征。如今,一个名为变变AualEncoder(VAE)的生成模型在DC研究中得到了广泛的认可。然而,平原VAE不足以察觉到综合潜在特征,导致细分性能恶化。本文提出了一种新的DC方法来解决这个问题。具体地,生成的逆势网络和VAE被聚结成了一种名为Fusion AutoEncoder(FAE)的新的AutoEncoder,以辨别出更多的辨别性表示,从而使下游聚类任务受益。此外,FAE通过深度剩余网络架构实施,进一步提高了表示学习能力。最后,将FAE的潜在空间转变为由深密神经网络的嵌入空间,用于彼此从彼此拉出不同的簇,并将数据点折叠在单个簇内。在几个图像数据集上进行的实验证明了所提出的DC模型对基线方法的有效性。
translated by 谷歌翻译
在这项工作中,我们解决了为野外任何演讲者发出静音唇部视频演讲的问题。与以前的作品形成鲜明对比的是,我们的方法(i)不仅限于固定数量的扬声器,(ii)并未明确对域或词汇构成约束,并且(iii)涉及在野外记录的视频,反对实验室环境。该任务提出了许多挑战,关键是,所需的目标语音的许多功能(例如语音,音调和语言内容)不能完全从无声的面部视频中推断出来。为了处理这些随机变化,我们提出了一种新的VAE-GAN结构,该结构学会了将唇部和语音序列关联到变化中。在指导培训过程的多个强大的歧视者的帮助下,我们的发电机学会了以任何人的唇部运动中的任何声音综合语音序列。多个数据集上的广泛实验表明,我们的优于所有基线的差距很大。此外,我们的网络可以在特定身份的视频上进行微调,以实现与单扬声器模型相当的性能,该模型接受了$ 4 \ times $ $数据的培训。我们进行了大量的消融研究,以分析我们体系结构不同模块的效果。我们还提供了一个演示视频,该视频与我们的网站上的代码和经过训练的模型一起展示了几个定性结果: -合成}}
translated by 谷歌翻译
在本文中,我们提出了一个可区分的世界合成器,并展示了其在端到端音频样式转移任务中的用途,例如(唱歌)语音转换和DDSP Timbre传输任务。因此,我们的基线可分化合成器没有模型参数,但可以产生足够的合成质量。我们可以通过附加轻巧的黑框邮寄来扩展基线合成器,这些邮政将进一步的处理应用于基线输出以提高忠诚度。另一种可区分的方法考虑了直接提取源激发光谱的提取,这可以改善自然性,尽管较窄的样式转移应用程序都可以提高自然性。我们的方法使用的声学特征参数化具有额外的好处,即自然会散布音调和音图信息,以便可以单独建模它们。此外,由于存在一种强大的方法来估算单声音频源的这些声学特征,因此它允许将参数丢失项添加到端到端目标函数中,这可以帮助收敛和/或进一步稳定(对抗性)训练。
translated by 谷歌翻译
随着脑成像技术和机器学习工具的出现,很多努力都致力于构建计算模型来捕获人脑中的视觉信息的编码。最具挑战性的大脑解码任务之一是通过功能磁共振成像(FMRI)测量的脑活动的感知自然图像的精确重建。在这项工作中,我们调查了来自FMRI的自然图像重建的最新学习方法。我们在架构设计,基准数据集和评估指标方面检查这些方法,并在标准化评估指标上呈现公平的性能评估。最后,我们讨论了现有研究的优势和局限,并提出了潜在的未来方向。
translated by 谷歌翻译
在当代流行的音乐作品中,鼓声设计通常是通过繁琐的浏览和处理声音库中预录的样品的处理来执行的。人们还可以使用专门的合成硬件,通常通过低级,音乐上毫无意义的参数来控制。如今,深度学习领域提供了通过学习的高级功能来控制合成过程的方法,并允许产生各种声音。在本文中,我们提出了Drumgan VST,这是一个使用生成对抗网络合成鼓声的插件。Drumgan VST可在44.1 kHz样品速率音频上运行,提供独立且连续的仪表类控件,并具有编码的神经网络,该网络映射到GAN的潜在空间中,从而可以重新合成并操纵前持有的鼓声。我们提供了许多声音示例和建议的VST插件的演示。
translated by 谷歌翻译
生成建模研究的持续趋势是将样本分辨率推高更高,同时减少培训和采样的计算要求。我们的目标是通过技术的组合进一步推动这一趋势 - 每个组件代表当前效率在各自领域的顶峰。其中包括载体定量的GAN(VQ-GAN),该模型具有高水平的损耗 - 但感知上微不足道的压缩模型;沙漏变形金刚,一个高度可扩展的自我注意力模型;和逐步未胶片的denoising自动编码器(Sundae),一种非自动化(NAR)文本生成模型。出乎意料的是,当应用于多维数据时,我们的方法突出了沙漏变压器的原始公式中的弱点。鉴于此,我们建议对重采样机制进行修改,该机制适用于将分层变压器应用于多维数据的任何任务。此外,我们证明了圣代表到长序列长度的可伸缩性 - 比先前的工作长四倍。我们提出的框架秤达到高分辨率($ 1024 \ times 1024 $),并迅速火车(2-4天)。至关重要的是,训练有素的模型在消费级GPU(GTX 1080TI)上大约2秒内生产多样化和现实的百像样品。通常,该框架是灵活的:支持任意数量的采样步骤,示例自动插入,自我纠正功能,有条件的生成和NAR公式,以允许任意介绍掩护。我们在FFHQ256上获得10.56的FID得分 - 仅在100个采样步骤中以不到一半的采样步骤接近原始VQ -GAN,而FFHQ1024的FFHQ1024和21.85。
translated by 谷歌翻译
基于生成对抗神经网络(GAN)的神经声码器由于其快速推理速度和轻量级网络而被广泛使用,同时产生了高质量的语音波形。由于感知上重要的语音成分主要集中在低频频段中,因此大多数基于GAN的神经声码器进行了多尺度分析,以评估降压化采样的语音波形。这种多尺度分析有助于发电机提高语音清晰度。然而,在初步实验中,我们观察到,重点放在低频频段的多尺度分析会导致意外的伪影,例如,混叠和成像伪像,这些文物降低了合成的语音波形质量。因此,在本文中,我们研究了这些伪影与基于GAN的神经声码器之间的关系,并提出了一个基于GAN的神经声码器,称为Avocodo,该机器人允许合成具有减少伪影的高保真语音。我们介绍了两种歧视者,以各种视角评估波形:协作多波段歧视者和一个子兰歧视器。我们还利用伪正常的镜像滤波器库来获得下采样的多频段波形,同时避免混音。实验结果表明,在语音和唱歌语音合成任务中,鳄梨的表现优于常规的基于GAN的神经声码器,并且可以合成无伪影的语音。尤其是,鳄梨甚至能够复制看不见的扬声器的高质量波形。
translated by 谷歌翻译
We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.
translated by 谷歌翻译