生成的对抗网络最近在神经声音中表现出了出色的表现,表现优于最佳自动回归和基于流动的模型。在本文中,我们表明这种成功可以扩展到有条件音频的其他任务。特别是,在HIFI Vocoders的基础上,我们为带宽扩展和语音增强的新型HIFI ++一般框架提出了新颖的一般框架。我们表明,通过改进的生成器体系结构和简化的多歧视培训,HIFI ++在这些任务中的最先进的情况下表现更好或与之相提并论,同时花费大量的计算资源。通过一系列广泛的实验,我们的方法的有效性得到了验证。
translated by 谷歌翻译
最近在各种语音域应用中提出了卷积增强的变压器(构象异构体),例如自动语音识别(ASR)和语音分离,因为它们可以捕获本地和全球依赖性。在本文中,我们提出了一个基于构型的度量生成对抗网络(CMGAN),以在时间频率(TF)域中进行语音增强(SE)。发电机使用两阶段构象体块编码大小和复杂的频谱图信息,以模拟时间和频率依赖性。然后,解码器将估计分解为尺寸掩模的解码器分支,以滤除不需要的扭曲和复杂的细化分支,以进一步改善幅度估计并隐式增强相信息。此外,我们还包括一个度量歧视器来通过优化相应的评估评分来减轻度量不匹配。客观和主观评估表明,与三个语音增强任务(DeNoising,dereverberation和Super-Losity)中的最新方法相比,CMGAN能够表现出卓越的性能。例如,对语音库+需求数据集的定量降解分析表明,CMGAN的表现优于以前的差距,即PESQ为3.41,SSNR为11.10 dB。
translated by 谷歌翻译
Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms. Although such methods improve the sampling efficiency and memory usage, their sample quality has not yet reached that of autoregressive and flow-based generative models. In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As speech audio consists of sinusoidal signals with various periods, we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality. A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the melspectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times faster than real-time on CPU with comparable quality to an autoregressive counterpart. IntroductionVoice is one of the most frequent and naturally used communication interfaces for humans. With recent developments in technology, voice is being used as a main interface in artificial intelligence (AI) voice assistant services such as Amazon Alexa, and it is also widely used in automobiles, smart homes and so forth. Accordingly, with the increase in demand for people to converse with machines, technology that synthesizes natural speech like human speech is being actively studied.Recently, with the development of neural networks, speech synthesis technology has made a rapid progress. Most neural speech synthesis models use a two-stage pipeline: 1) predicting a low resolution intermediate representation such as mel-spectrograms (
translated by 谷歌翻译
尽管在基于生成的对抗网络(GAN)的声音编码器中,该模型在MEL频谱图中生成原始波形,但在各种录音环境中为众多扬声器合成高保真音频仍然具有挑战性。在这项工作中,我们介绍了Bigvgan,这是一款通用的Vocoder,在零照片环境中在各种看不见的条件下都很好地概括了。我们将周期性的非线性和抗氧化表现引入到发电机中,这带来了波形合成所需的感应偏置,并显着提高了音频质量。根据我们改进的生成器和最先进的歧视器,我们以最大的规模训练我们的Gan Vocoder,最高到1.12亿个参数,这在文献中是前所未有的。特别是,我们识别并解决了该规模特定的训练不稳定性,同时保持高保真输出而不过度验证。我们的Bigvgan在各种分布场景中实现了最先进的零拍性能,包括新的扬声器,新颖语言,唱歌声音,音乐和乐器音频,在看不见的(甚至是嘈杂)的录制环境中。我们将在以下网址发布我们的代码和模型:https://github.com/nvidia/bigvgan
translated by 谷歌翻译
从语音音频中删除背景噪音一直是大量研究和努力的主题,尤其是由于虚拟沟通和业余声音录制的兴起,近年来。然而,背景噪声并不是唯一可以防止可理解性的不愉快干扰:混响,剪裁,编解码器工件,有问题的均衡,有限的带宽或不一致的响度同样令人不安且无处不在。在这项工作中,我们建议将言语增强的任务视为一项整体努力,并提出了一种普遍的语音增强系统,同时解决了55种不同的扭曲。我们的方法由一种使用基于得分的扩散的生成模型以及一个多分辨率调节网络,该网络通过混合密度网络进行增强。我们表明,这种方法在专家听众执行的主观测试中大大优于艺术状态。我们还表明,尽管没有考虑任何特定的快速采样策略,但它仅通过4-8个扩散步骤就可以实现竞争性的目标得分。我们希望我们的方法论和技术贡献都鼓励研究人员和实践者采用普遍的语音增强方法,可能将其作为一项生成任务。
translated by 谷歌翻译
我们提出了一个录音录音录音的录音录音。我们的模型通过短时傅立叶变换(STFT)将其输入转换为时频表示,并使用卷积神经网络处理所得的复杂频谱图。该网络在合成音乐数据集上培训了重建和对抗性目标,该数据集是通过将干净的音乐与从旧唱片的安静片段中提取的真实噪声样本混合而创建的。我们在合成数据集的持有测试示例中定量评估我们的方法,并通过人类对实际历史记录样本的评级进行定性评估。我们的结果表明,所提出的方法可有效消除噪音,同时保留原始音乐的质量和细节。
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Previous works (Donahue et al., 2018a;Engel et al., 2019a) have found that generating coherent raw audio waveforms with GANs is challenging. In this paper, we show that it is possible to train GANs reliably to generate high quality coherent waveforms by introducing a set of architectural changes and simple training techniques. Subjective evaluation metric (Mean Opinion Score, or MOS) shows the effectiveness of the proposed approach for high quality mel-spectrogram inversion. To establish the generality of the proposed techniques, we show qualitative results of our model in speech synthesis, music domain translation and unconditional music synthesis. We evaluate the various components of the model through ablation studies and suggest a set of guidelines to design general purpose discriminators and generators for conditional sequence synthesis tasks. Our model is non-autoregressive, fully convolutional, with significantly fewer parameters than competing models and generalizes to unseen speakers for mel-spectrogram inversion. Our pytorch implementation runs at more than 100x faster than realtime on GTX 1080Ti GPU and more than 2x faster than real-time on CPU, without any hardware specific optimization tricks.
translated by 谷歌翻译
基于生成对抗神经网络(GAN)的神经声码器由于其快速推理速度和轻量级网络而被广泛使用,同时产生了高质量的语音波形。由于感知上重要的语音成分主要集中在低频频段中,因此大多数基于GAN的神经声码器进行了多尺度分析,以评估降压化采样的语音波形。这种多尺度分析有助于发电机提高语音清晰度。然而,在初步实验中,我们观察到,重点放在低频频段的多尺度分析会导致意外的伪影,例如,混叠和成像伪像,这些文物降低了合成的语音波形质量。因此,在本文中,我们研究了这些伪影与基于GAN的神经声码器之间的关系,并提出了一个基于GAN的神经声码器,称为Avocodo,该机器人允许合成具有减少伪影的高保真语音。我们介绍了两种歧视者,以各种视角评估波形:协作多波段歧视者和一个子兰歧视器。我们还利用伪正常的镜像滤波器库来获得下采样的多频段波形,同时避免混音。实验结果表明,在语音和唱歌语音合成任务中,鳄梨的表现优于常规的基于GAN的神经声码器,并且可以合成无伪影的语音。尤其是,鳄梨甚至能够复制看不见的扬声器的高质量波形。
translated by 谷歌翻译
我们介绍了时间特征 - 方向线性调制(TFILM)模型的块在线变体,以实现带宽扩展。所提出的架构简化了TFILM的UNET骨干,以减少推理时间,并在瓶颈中采用有效的变压器来缓解性能下降。我们还利用自我监督的预测和数据增强,以提高带宽扩展信号的质量,并降低对下采样方法的灵敏度。VCTK数据集上的实验结果表明,所提出的方法优于侵入性和非侵入性度量的几个最近基线。预先训练和过滤增强也有助于稳定并提高整体性能。
translated by 谷歌翻译
Deep neural networks (DNN) techniques have become pervasive in domains such as natural language processing and computer vision. They have achieved great success in these domains in task such as machine translation and image generation. Due to their success, these data driven techniques have been applied in audio domain. More specifically, DNN models have been applied in speech enhancement domain to achieve denosing, dereverberation and multi-speaker separation in monaural speech enhancement. In this paper, we review some dominant DNN techniques being employed to achieve speech separation. The review looks at the whole pipeline of speech enhancement from feature extraction, how DNN based tools are modelling both global and local features of speech and model training (supervised and unsupervised). We also review the use of speech-enhancement pre-trained models to boost speech enhancement process. The review is geared towards covering the dominant trends with regards to DNN application in speech enhancement in speech obtained via a single speaker.
translated by 谷歌翻译
Modern speech enhancement (SE) networks typically implement noise suppression through time-frequency masking, latent representation masking, or discriminative signal prediction. In contrast, some recent works explore SE via generative speech synthesis, where the system's output is synthesized by a neural vocoder after an inherently lossy feature-denoising step. In this paper, we propose a denoising vocoder (DeVo) approach, where a vocoder accepts noisy representations and learns to directly synthesize clean speech. We leverage rich representations from self-supervised learning (SSL) speech models to discover relevant features. We conduct a candidate search across 15 potential SSL front-ends and subsequently train our vocoder adversarially with the best SSL configuration. Additionally, we demonstrate a causal version capable of running on streaming audio with 10ms latency and minimal performance degradation. Finally, we conduct both objective evaluations and subjective listening studies to show our system improves objective metrics and outperforms an existing state-of-the-art SE model subjectively.
translated by 谷歌翻译
视频到语音是从口语说话视频中重建音频演讲的过程。此任务的先前方法依赖于两个步骤的过程,该过程从视频中推断出中间表示,然后使用Vocoder或波形重建算法将中间表示形式解码为波形音频。在这项工作中,我们提出了一个基于生成对抗网络(GAN)的新的端到端视频到语音模型,该模型将口语视频转换为波形端到端,而无需使用任何中间表示或单独的波形合成算法。我们的模型由一个编码器架构组成,该体系结构接收原始视频作为输入并生成语音,然后将其馈送到波形评论家和权力评论家。基于这两个批评家的对抗损失的使用可以直接综合原始音频波形并确保其现实主义。此外,我们的三个比较损失的使用有助于建立生成的音频和输入视频之间的直接对应关系。我们表明,该模型能够用诸如网格之类的受约束数据集重建语音,并且是第一个为LRW(野外唇读)生成可理解的语音的端到端模型,以数百名扬声器为特色。完全记录在“野外”。我们使用四个客观指标来评估两种不同的情况下生成的样本,这些客观指标衡量了人工语音的质量和清晰度。我们证明,所提出的方法在Grid和LRW上的大多数指标上都优于以前的所有作品。
translated by 谷歌翻译
在这项工作中,我们提出了清洁nunet,这是原始波形上的因果语音deno的模型。所提出的模型基于编码器架构,并结合了几个自我注意块,以完善其瓶颈表示,这对于获得良好的结果至关重要。该模型通过在波形和多分辨率光谱图上定义的一组损失进行了优化。所提出的方法在各种客观和主观评估指标中的言语质量方面优于最先进的模型。
translated by 谷歌翻译
人类脑中脑中的背景利用异质感官信息,以有效地执行包括视觉和听力的认知任务。例如,在鸡尾酒会党的情况下,人类听觉Cortex上下文中的视听(AV)提示才能更好地感知言论。最近的研究表明,与音频SE模型相比,AV语音增强(SE)模型可以显着提高信噪比(SNR)环境的极低信号的语音质量和可懂度。然而,尽管在AV SE的领域进行了显着的研究,但具有低延迟的实时处理模型的开发仍然是一个强大的技术挑战。在本文中,我们为低延迟扬声器的独立AV SE提供了一种新颖的框架,可以概括一系列视觉和声学噪声。特别地,提出了一种生成的对抗性网络(GaN)来解决AV SE的视觉缺陷的实际问题。此外,我们提出了一种基于神经网络的深度神经网络的实时AV SE模型,考虑到从GaN的清洁的视觉语音输出来提供更强大的SE。拟议的框架使用客观语音质量和可懂度指标和主观上市测试对合成和真实嘈杂的AV语料库进行评估。比较仿真结果表明,我们的实时AV SE框架优于最先进的SE方法,包括最近的基于DNN的SE模型。
translated by 谷歌翻译
Music discovery services let users identify songs from short mobile recordings. These solutions are often based on Audio Fingerprinting, and rely more specifically on the extraction of spectral peaks in order to be robust to a number of distortions. Few works have been done to study the robustness of these algorithms to background noise captured in real environments. In particular, AFP systems still struggle when the signal to noise ratio is low, i.e when the background noise is strong. In this project, we tackle this problematic with Deep Learning. We test a new hybrid strategy which consists of inserting a denoising DL model in front of a peak-based AFP algorithm. We simulate noisy music recordings using a realistic data augmentation pipeline, and train a DL model to denoise them. The denoising model limits the impact of background noise on the AFP system's extracted peaks, improving its robustness to noise. We further propose a novel loss function to adapt the DL model to the considered AFP system, increasing its precision in terms of retrieved spectral peaks. To the best of our knowledge, this hybrid strategy has not been tested before.
translated by 谷歌翻译
Prior works on improving speech quality with visual input typically study each type of auditory distortion separately (e.g., separation, inpainting, video-to-speech) and present tailored algorithms. This paper proposes to unify these subjects and study Generalized Speech Enhancement, where the goal is not to reconstruct the exact reference clean signal, but to focus on improving certain aspects of speech. In particular, this paper concerns intelligibility, quality, and video synchronization. We cast the problem as audio-visual speech resynthesis, which is composed of two steps: pseudo audio-visual speech recognition (P-AVSR) and pseudo text-to-speech synthesis (P-TTS). P-AVSR and P-TTS are connected by discrete units derived from a self-supervised speech model. Moreover, we utilize self-supervised audio-visual speech model to initialize P-AVSR. The proposed model is coined ReVISE. ReVISE is the first high-quality model for in-the-wild video-to-speech synthesis and achieves superior performance on all LRS3 audio-visual enhancement tasks with a single model. To demonstrates its applicability in the real world, ReVISE is also evaluated on EasyCom, an audio-visual benchmark collected under challenging acoustic conditions with only 1.6 hours of training data. Similarly, ReVISE greatly suppresses noise and improves quality. Project page: https://wnhsu.github.io/ReVISE.
translated by 谷歌翻译
Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time-frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase and magnitude of the signal, the suboptimality of time-frequency representation for speech separation, and the long latency in calculating the spectrograms. To address these shortcomings, we propose a fully-convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time-domain speech separation. Conv-TasNet uses a linear encoder to generate a representation of the speech waveform optimized for separating individual speakers. Speaker separation is achieved by applying a set of weighting functions (masks) to the encoder output. The modified encoder representations are then inverted back to the waveforms using a linear decoder. The masks are found using a temporal convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, which allows the network to model the long-term dependencies of the speech signal while maintaining a small model size. The proposed Conv-TasNet system significantly outperforms previous time-frequency masking methods in separating two-and three-speaker mixtures. Additionally, Conv-TasNet surpasses several ideal time-frequency magnitude masks in two-speaker speech separation as evaluated by both objective distortion measures and subjective quality assessment by human listeners. Finally, Conv-TasNet has a significantly smaller model size and a shorter minimum latency, making it a suitable solution for both offline and real-time speech separation applications. This study therefore represents a major step toward the realization of speech separation systems for real-world speech processing technologies.
translated by 谷歌翻译
大多数GaN(生成的对抗网络)基于高保真波形的方法,严重依赖于鉴别者来提高其性能。然而,该GaN方法的过度使用引入了生成过程中的许多不确定性,并且通常导致音调和强度不匹配,当使用诸如唱歌语音合成(SVS)敏感时,这是致命的。为了解决这个问题,我们提出了一种高保真神经声码器的Refinegan,具有更快的实时发电能力,并专注于鲁棒性,俯仰和强度精度和全带音频生成。我们采用了一种具有基于多尺度谱图的损耗功能的播放引导的细化架构,以帮助稳定训练过程,并在使用基于GaN的训练方法的同时保持神经探测器的鲁棒性。与地面真实音频相比,使用此方法生成的音频显示在主观测试中更好的性能。该结果表明,通过消除由扬声器和记录过程产生的缺陷,在波形重建期间甚至改善了保真度。此外,进一步的研究表明,在特定类型的数据上培训的模型可以在完全看不见的语言和看不见的扬声器上相同地执行。生成的样本对在https://timedomain-tech.github.io/refinegor上提供。
translated by 谷歌翻译
最近,卷积增强的变压器(构象异构体)在自动语音识别(ASR)和时间域语音增强(SE)中实现了有希望的表现,因为它可以捕获语音信号中的本地和全局依赖性。在本文中,我们在时间频率(TF)域中提出了SE的基于构型的度量生成对抗网络(CMGAN)。在发电机中,我们利用两阶段的构象体块来通过对时间和频率依赖性进行建模来汇总所有幅度和复杂的频谱图。大小和复杂谱图的估计在解码器阶段被解耦,然后共同掺入以重建增强的语音。此外,通过优化相应的评估评分,采用了度量歧视器来进一步提高增强估计语音的质量。语音库+需求数据集的定量分析表明,CMGAN在优于以前的模型的功能,即PESQ为3.41,SSNR为11.10 dB。
translated by 谷歌翻译