先前关于安全加强学习的工作(RL)研究了对动态(aleatory)随机性的风险规避,并隔离地模拟了不确定性(认知)。我们提出并分析一个新框架,以共同对有限马和折现的无限马MDP中的认知和差异不确定性相关的风险进行建模。我们称此框架结合了规避风险和软性的方法RASR。我们表明,当使用EVAR或熵风险定义风险规定时,可以使用具有时间依赖性风险水平的新的动态程序公式有效地计算RASR中的最佳策略。结果,即使是在无限 - 亨特折扣环境中,最佳的规避风险政策也是确定性但依赖时间的。我们还表明,具有平均后验过渡概率的特定RASR目标减少到规避风险的RL。我们的经验结果表明,我们的新算法始终减轻EVAR和其他标准风险措施衡量的不确定性。
translated by 谷歌翻译
在动态编程(DP)和强化学习(RL)中,代理商学会在通过由Markov决策过程(MDP)建模的环境中顺序交互来实现预期的长期返回。更一般地在分布加强学习(DRL)中,重点是返回的整体分布,而不仅仅是其期望。虽然基于DRL的方法在RL中产生了最先进的性能,但它们涉及尚未充分理解的额外数量(与非分布设置相比)。作为第一个贡献,我们介绍了一类新的分类运营商,以及一个实用的DP算法,用于策略评估,具有强大的MDP解释。实际上,我们的方法通过增强的状态空间重新重新重新重新重新重新格式化,其中每个状态被分成最坏情况的子变量,并且最佳的子变电站,其值分别通过安全和危险的策略最大化。最后,我们派生了分配运营商和DP算法解决了一个新的控制任务:如何区分安全性的最佳动作,以便在最佳政策空间中打破联系?
translated by 谷歌翻译
强大的马尔可夫决策过程(MDP)用于在不确定环境中的动态优化应用,并已进行了广泛的研究。 MDP的许多主要属性和算法(例如价值迭代和策略迭代)直接扩展到RMDP。令人惊讶的是,没有已知的MDP凸优化公式用于求解RMDP。这项工作描述了在经典的SA截形和S型角假设下RMDP的第一个凸优化公式。我们通过使用熵正则化和变量的指数变化来得出具有线性数量和约束的线性数量的凸公式。我们的公式可以与来自凸优化的有效方法结合使用,以获得以不确定概率求解RMDP的新算法。我们进一步简化了使用多面体不确定性集的RMDP的公式。我们的工作打开了RMDP的新研究方向,可以作为获得RMDP的可拖动凸公式的第一步。
translated by 谷歌翻译
我们开发了一种利用无模型增强学习(RL)解决时间一致风险敏感随机优化问题的方法。具体地,我们假设代理商使用动态凸面风险措施评估一系列随机变量的风险。我们采用时间一致的动态编程原则来确定特定策略的值,并开发策略渐变更新规则。我们进一步开发了一个使用神经网络的演员批评风格算法,以优化策略。最后,我们通过将其应用于统计套利交易和障碍避免机器人控制中的优化问题来证明我们的方法的性能和灵活性。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
本文涉及离线增强学习(RL)中模型鲁棒性和样本效率的核心问题,该问题旨在学习从没有主动探索的情况下从历史数据中执行决策。由于环境的不确定性和变异性,至关重要的是,学习强大的策略(尽可能少的样本),即使部署的环境偏离用于收集历史记录数据集的名义环境时,该策略也能很好地执行。我们考虑了离线RL的分布稳健公式,重点是标签非平稳的有限摩托稳健的马尔可夫决策过程,其不确定性设置为Kullback-Leibler Divergence。为了与样本稀缺作用,提出了一种基于模型的算法,该算法将分布强劲的价值迭代与面对不确定性时的悲观原理结合在一起,通过对稳健的价值估计值进行惩罚,以精心设计的数据驱动的惩罚项进行惩罚。在对历史数据集的轻度和量身定制的假设下,该数据集测量分布变化而不需要完全覆盖州行动空间,我们建立了所提出算法的有限样本复杂性,进一步表明,鉴于几乎无法改善的情况,匹配信息理论下限至地平线长度的多项式因素。据我们所知,这提供了第一个在模型不确定性和部分覆盖范围内学习的近乎最佳的稳健离线RL算法。
translated by 谷歌翻译
In this paper we develop a theoretical analysis of the performance of sampling-based fitted value iteration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs) under the assumption that a generative model of the environment is available. Our main results come in the form of finite-time bounds on the performance of two versions of sampling-based FVI. The convergence rate results obtained allow us to show that both versions of FVI are well behaving in the sense that by using a sufficiently large number of samples for a large class of MDPs, arbitrary good performance can be achieved with high probability. An important feature of our proof technique is that it permits the study of weighted L p -norm performance bounds. As a result, our technique applies to a large class of function-approximation methods (e.g., neural networks, adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability properties of the MDP: they scale with the discounted-average concentrability of the future-state distributions. They also depend on a new measure of the approximation power of the function space, the inherent Bellman residual, which reflects how well the function space is "aligned" with the dynamics and rewards of the MDP. The conditions of the main result, as well as the concepts introduced in the analysis, are extensively discussed and compared to previous theoretical results. Numerical experiments are used to substantiate the theoretical findings.
translated by 谷歌翻译
我们研究马尔可夫决策过程(MDP)框架中的离线数据驱动的顺序决策问题。为了提高学习政策的概括性和适应性,我们建议通过一套关于在政策诱导的固定分配所在的分发的一套平均奖励来评估每项政策。给定由某些行为策略生成的多个轨迹的预收集数据集,我们的目标是在预先指定的策略类中学习一个强大的策略,可以最大化此集的最小值。利用半参数统计的理论,我们开发了一种统计上有效的策略学习方法,用于估算DE NED强大的最佳政策。在数据集中的总决策点方面建立了达到对数因子的速率最佳遗憾。
translated by 谷歌翻译
本文涉及增强学习的样本效率,假设进入生成模型(或模拟器)。我们首先考虑$ \ gamma $ -discounted infinite-horizo​​ n markov决策过程(mdps)与状态空间$ \ mathcal {s} $和动作空间$ \ mathcal {a} $。尽管有许多先前的作品解决这个问题,但尚未确定样本复杂性和统计准确性之间的权衡的完整图像。特别地,所有事先结果都遭受严重的样本大小屏障,因为只有在样本量超过$ \ FRAC {| \ Mathcal {S} || \ Mathcal {A} |} {(1- \ gamma)^ 2} $。目前的论文通过认证了两种算法的最小值 - 基于模型的算法和基于保守模型的算法的最小值,克服了该障碍 - 一旦样本大小超过$ \ FRAC {| \ Mathcal {s } || mathcal {a} |} {1- \ gamma} $(modulo一些日志系数)。超越无限地平线MDP,我们进一步研究了时代的有限情况MDP,并证明了一种基于普通模型的规划算法足以实现任何目标精度水平的最佳样本复杂性。据我们所知,这项工作提供了第一个最低限度的最佳保证,可容纳全部样本尺寸(超出哪个发现有意义的政策是理论上不可行的信息)。
translated by 谷歌翻译
使用悲观,推理缺乏详尽的勘探数据集时的脱机强化学习最近颇具知名度。尽管它增加了算法的鲁棒性,过于悲观的推理可以在排除利好政策的发现,这是流行的基于红利悲观的问题同样有害。在本文中,我们介绍一般函数近似的Bellman-一致悲观的概念:不是计算逐点下界的值的功能,我们在超过设定的与贝尔曼方程一致的功能的初始状态实现悲观。我们的理论保证只需要贝尔曼封闭性作为探索性的设置标准,其中基于奖金的情况下的悲观情绪未能提供担保。即使在线性函数逼近的特殊情况下更强的表现力假设成立,我们的结果由$ \ mathcal {}Ø(d)在其样品的复杂$在最近的基于奖金的方法改善的时候,动作的空间是有限的。值得注意的是,我们的算法,能够自动适应事后最好的偏差 - 方差折中,而大多数现有的方法中需要调整的额外超参数的先验。
translated by 谷歌翻译
In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor $\gamma$ goes to $1$, and moreover, when $\gamma$ is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy.
translated by 谷歌翻译
强大的增强学习(RL)的目的是学习一项与模型参数不确定性的强大策略。由于模拟器建模错误,随着时间的推移,现实世界系统动力学的变化以及对抗性干扰,参数不确定性通常发生在许多现实世界中的RL应用中。强大的RL通常被称为最大问题问题,其目的是学习最大化价值与不确定性集合中最坏可能的模型的策略。在这项工作中,我们提出了一种称为鲁棒拟合Q-材料(RFQI)的强大RL算法,该算法仅使用离线数据集来学习最佳稳健策略。使用离线数据的强大RL比其非持续性对应物更具挑战性,因为在强大的Bellman运营商中所有模型的最小化。这在离线数据收集,对模型的优化以及公正的估计中构成了挑战。在这项工作中,我们提出了一种系统的方法来克服这些挑战,从而导致了我们的RFQI算法。我们证明,RFQI在标准假设下学习了一项近乎最佳的强大政策,并证明了其在标准基准问题上的出色表现。
translated by 谷歌翻译
强化学习算法的实用性由于相对于问题大小的规模差而受到限制,因为学习$ \ epsilon $ -optimal策略的样本复杂性为$ \ tilde {\ omega} \ left(| s | s || a || a || a || a | h^3 / \ eps^2 \ right)$在MDP的最坏情况下,带有状态空间$ S $,ACTION SPACE $ A $和HORIZON $ H $。我们考虑一类显示出低级结构的MDP,其中潜在特征未知。我们认为,价值迭代和低级别矩阵估计的自然组合导致估计误差在地平线上呈指数增长。然后,我们提供了一种新算法以及统计保证,即有效利用了对生成模型的访问,实现了$ \ tilde {o} \ left的样本复杂度(d^5(d^5(| s |+| a |)\),我们有效利用低级结构。对于等级$ d $设置的Mathrm {Poly}(h)/\ EPS^2 \ right)$,相对于$ | s |,| a | $和$ \ eps $的缩放,这是最小值的最佳。与线性和低级别MDP的文献相反,我们不需要已知的功能映射,我们的算法在计算上很简单,并且我们的结果长期存在。我们的结果提供了有关MDP对过渡内核与最佳动作值函数所需的最小低级结构假设的见解。
translated by 谷歌翻译
尽管无奖励强化学习勘探阶段的主要目标(RF-RL)是减少具有最小轨迹数量的估计模型中的不确定性时间。目前尚不清楚这种安全的探索要求如何影响相应的样本复杂性,以实现所获得的计划中所需的最佳性。在这项工作中,我们首次尝试回答这个问题。特别是,我们考虑了事先知道安全基线政策的情况,并提出了一个统一的安全奖励探索(甜蜜)框架。然后,我们将甜蜜框架专门为表格和低级MDP设置,并分别开发出算法所构成的表格甜味和低级别甜味。两种算法都利用了新引入的截短值函数的凹度和连续性,并保证在探索过程中以高概率侵犯了零约束。此外,两种算法都可以在计划阶段的任何约束中找到近乎最佳的政策。值得注意的是,算法下的样本复杂性在无限制的对应物中匹配甚至超过最恒定因素的最新情况,这证明安全约束几乎不会增加RF-RL的样本复杂性。
translated by 谷歌翻译
在大约正确的(PAC)强化学习(RL)中,需要代理来识别具有$ 1- \ delta $的$ \ epsilon $最佳政策。尽管此问题存在最小值最佳算法,但其实例依赖性复杂性在情节马尔可夫决策过程(MDPS)中仍然难以捉摸。在本文中,我们提出了具有有限状态和动作空间的确定性情节MDP中PAC RL样品复杂性的第一个(几乎)匹配的上限和下限。特别是,我们的界限为国家行动对的新概念构成了我们称为确定性返回差距的新概念。尽管我们的依赖实例的下限是作为线性程序编写的,但我们的算法非常简单,并且在学习过程中不需要解决这样的优化问题。他们的设计和分析采用了新颖的想法,包括图理论概念,例如最小流量和最大削减,我们认为这为这个问题提供了新的启示。
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
我们研究了用线性函数近似的加固学习中的违规评估(OPE)问题,旨在根据行为策略收集的脱机数据来估计目标策略的价值函数。我们建议纳入价值函数的方差信息以提高ope的样本效率。更具体地说,对于时间不均匀的epiSodic线性马尔可夫决策过程(MDP),我们提出了一种算法VA-OPE,它使用价值函数的估计方差重新重量拟合Q迭代中的Bellman残差。我们表明我们的算法达到了比最着名的结果绑定的更紧密的误差。我们还提供了行为政策与目标政策之间的分布转移的细粒度。广泛的数值实验证实了我们的理论。
translated by 谷歌翻译
In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account risk, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective of this paper is to present efficient reinforcement learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is represented via a chance constraint or a constraint on the conditional value-at-risk (CVaR) of the cumulative cost. We collectively refer to such problems as percentile risk-constrained MDPs. Specifically, we first derive a formula for computing the gradient of the Lagrangian function for percentile riskconstrained MDPs. Then, we devise policy gradient and actor-critic algorithms that (1) estimate such gradient, (2) update the policy in the descent direction, and (3) update the Lagrange multiplier in the ascent direction. For these algorithms we prove convergence to locally optimal policies. Finally, we demonstrate the effectiveness of our algorithms in an optimal stopping problem and an online marketing application.
translated by 谷歌翻译
在阻碍强化学习(RL)到现实世界中的问题的原因之一,两个因素至关重要:与培训相比,数据有限和测试环境的不匹配。在本文中,我们试图通过分配强大的离线RL的问题同时解决这些问题。特别是,我们学习了一个从源环境中获得的历史数据,并优化了RL代理,并在扰动的环境中表现良好。此外,我们考虑将算法应用于大规模问题的线性函数近似。我们证明我们的算法可以实现$ O(1/\ sqrt {k})$的次级临时性,具体取决于线性函数尺寸$ d $,这似乎是在此设置中使用样品复杂性保证的第一个结果。进行了不同的实验以证明我们的理论发现,显示了我们算法与非持bust算法的优越性。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译