通过使多个代理在缺乏中央协调员的情况下合作解决全球优化问题,分散的随机优化在像机器学习,控制和传感器网络这样的多种多样的领域中,人们的注意力越来越多。由于相关数据通常包含敏感信息,例如用户位置和个人身份,因此在实施分散的随机优化时,隐私保护已成为至关重要的需求。在本文中,我们提出了一种分散的随机优化算法,即使在存在与量化幅度成正比的积极量化误差的情况下,该算法也能够保证可证明的收敛精度。该结果同时适用于凸面和非凸目标函数,使我们能够利用积极的量化方案来混淆共享信息,因此可以在不失去可证明的优化精度的情况下进行隐私保护。实际上,通过使用将任何值量化为三个数值级别的任何值的{随机}三元量化方案,我们在分散的随机优化中实现了基于量化的严格差异隐私,以前尚未报告。结合提出的量化方案,提出的算法首次确保了分散的随机优化中的严格差异隐私,而不会失去可证明的收敛精度。分布式估计问题以及基准计算机学习数据集上分散学习的数值实验的仿真结果证实了所提出方法的有效性。
translated by 谷歌翻译
Privacy protection and nonconvexity are two challenging problems in decentralized optimization and learning involving sensitive data. Despite some recent advances addressing each of the two problems separately, no results have been reported that have theoretical guarantees on both privacy protection and saddle/maximum avoidance in decentralized nonconvex optimization. We propose a new algorithm for decentralized nonconvex optimization that can enable both rigorous differential privacy and saddle/maximum avoiding performance. The new algorithm allows the incorporation of persistent additive noise to enable rigorous differential privacy for data samples, gradients, and intermediate optimization variables without losing provable convergence, and thus circumventing the dilemma of trading accuracy for privacy in differential privacy design. More interestingly, the algorithm is theoretically proven to be able to efficiently { guarantee accuracy by avoiding} convergence to local maxima and saddle points, which has not been reported before in the literature on decentralized nonconvex optimization. The algorithm is efficient in both communication (it only shares one variable in each iteration) and computation (it is encryption-free), and hence is promising for large-scale nonconvex optimization and learning involving high-dimensional optimization parameters. Numerical experiments for both a decentralized estimation problem and an Independent Component Analysis (ICA) problem confirm the effectiveness of the proposed approach.
translated by 谷歌翻译
在本文中,我们考虑了分散的优化问题,在这些问题中,代理具有个人成本函数,以最大程度地减少受到子空间约束的约束,这些子空间约束需要整个网络的最小化器才能位于低维子空间中。这种约束的公式包括共识或单任务优化作为特殊情况,并允许更一般的任务相关性模型,例如多任务平滑度和耦合优化。为了应对沟通限制,我们提出并研究一种自适应分散策略,在该策略中,代理人在与邻居进行交流之前,使用差异随机量化器来压缩其估计。分析表明,在量化噪声的某些一般条件下,对于足够小的步长$ \ mu $,该策略在均方误差和平均比特率方面都是稳定的:通过减少$ \ mu $,可以将估计错误保持较小(按$ \ mu $)保持较小,而不会无限地增加比特率为$ \ mu \ rightarrow 0 $。模拟说明了理论发现和提议方法的有效性,表明可以实现分散学习,但仅需少量。
translated by 谷歌翻译
在本文中,我们处理了一个通用分布式约束的在线学习问题,并在随着时间变化的网络上进行了隐私,其中考虑了一类不可分配的目标功能。在此设置下,每个节点仅控制全球决策变量的一部分,所有节点的目标是在时间范围内协作最小化全球目标,同时保证传输信息的安全性。对于此类问题,我们首先设计了一种新颖的通用算法框架,称为DPSDA,使用Laplace机制和双重平均方法的随机变体进行了差异性私有分布式在线学习。然后,我们建议在此框架下提出两种算法,称为DPSDA-C和DPSDA-PS。理论结果表明,两种算法都达到了预期的遗憾上度上限$ \ MATHCAL {O}(\ sqrt {t})$当目标函数是凸的时,它符合通过切割边缘算法来实现的最佳效用。最后,数值实验在现实世界和随机生成的数据集上都验证了我们算法的有效性。
translated by 谷歌翻译
这项工作审查了旨在在通信约束下运行的自适应分布式学习策略。我们考虑一个代理网络,必须从持续观察流数据来解决在线优化问题。代理商实施了分布式合作策略,其中允许每个代理商与其邻居执行本地信息交换。为了应对通信约束,必须不可避免地压缩交换信息。我们提出了一种扩散策略,昵称为ACTC(适应 - 压缩 - 然后组合),其依赖于以下步骤:i)每个代理执行具有恒定步长大小的单独随机梯度更新的适应步骤; ii)一种压缩步骤,它利用最近引入的随机压缩操作员;和III)每个代理组合从其邻居接收的压缩更新的组合步骤。这项工作的区别要素如下。首先,我们专注于自适应策略,其中常数(而不是递减)阶梯大小对于实时响应非间断变化至关重要。其次,我们考虑一般的指导图表和左随机组合政策,使我们能够增强拓扑和学习之间的相互作用。第三,与对所有个人代理的成本职能承担强大的凸起的相关作品相比,我们只需要在网络水平的强大凸起,即使单个代理具有强凸的成本,剩余的代理商也不满足凸起成本。第四,我们专注于扩散(而不是共识)战略。在压缩信息的苛刻设置下,建立ACTC迭代在所需的优化器周围波动,在相邻代理之间交换的比特方面取得了显着的节省。
translated by 谷歌翻译
非平滑的有限和最小化是机器学习中的一个基本问题。本文开发了一种具有随机重新洗牌的分布式随机近端梯度算法,以解决随着时变多代理网络的有限和最小化。目标函数是可分辨率凸起功能的总和和非平滑的正则化。网络中的每个代理通过本地信息更新具有恒定步长大小的局部变量,并协作以寻求最佳解决方案。我们证明了所提出的算法产生的局部变量估计实现共识,并且与$ \ mathcal {o}(\ frac {1} {t} + \ frac {1} {\SQRT {T}})$收敛率。此外,本文通过选择足够的阶梯尺寸,可以任意地小的目标函数的稳态误差。最后,提供了一些比较仿真来验证所提出的算法的收敛性能。
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
Enhancing resilience in distributed networks in the face of malicious agents is an important problem for which many key theoretical results and applications require further development and characterization. This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's dynamic is influenced both by the values it receives from potentially malicious neighboring agents, and by its own self-serving target function. We develop a new algorithmic and analytical framework to achieve resilience for the class of problems where stochastic values of trust between agents exist and can be exploited. In this case we show that convergence to the true global optimal point can be recovered, both in mean and almost surely, even in the presence of malicious agents. Furthermore, we provide expected convergence rate guarantees in the form of upper bounds on the expected squared distance to the optimal value. Finally, we present numerical results that validate the analytical convergence guarantees we present in this paper even when the malicious agents compose the majority of agents in the network.
translated by 谷歌翻译
我们考虑一个多代理网络,其中每个节点具有随机(本地)成本函数,这取决于该节点的决策变量和随机变量,并且进一步的相邻节点的判定变量是成对受约束的。网络具有总体目标函数,其在节点处的本地成本函数的预期值ack,以及网络的总体目标是将该聚合目标函数的最小化解决方案最小化为所有成对约束。这将在节点级别使用分散的信息和本地计算来实现,其中仅具有相邻节点允许的压缩信息的交换。该文件开发算法,并在节点上获得两个不同型号的本地信息可用性模型的性能界限:(i)样本反馈,其中每个节点可以直接访问局部随机变量的样本,以评估其本地成本,(ii)babrit反馈,其中无随机变量的样本不可用,但只有每个节点可用的两个随机点处的本地成本函数的值可用。对于两种模型,具有邻居之间的压缩通信,我们开发了分散的骑马点算法,从没有通信压缩的那些没有不同(符号意义)的表现;具体而言,我们表明,与全局最小值和违反约束的偏差是由$ \ mathcal {o}的大约限制(t ^ { - \ frac {1} {2}})$和$ \ mathcal {o} (t ^ { - \ frac {1} {4}})分别为$ t $是迭代次数。本文中提供的数值例子证实了这些界限并证明了所提出的方法的通信效率。
translated by 谷歌翻译
联合学习(FL)是一种从分散数据源训练机器学习模型的技术。我们根据当地的隐私约束概念研究FL,该概念通过在离开客户之前使数据混淆,为敏感数据披露提供了强烈的保护。我们确定了设计实用隐私的FL算法的两个主要问题:沟通效率和高维度的兼容性。然后,我们开发一种基于梯度的学习算法,称为\ emph {sqsgd}(选择性量化的随机梯度下降),以解决这两个问题。所提出的算法基于一种新颖的隐私量化方案,该方案使用每个客户每个维度的恒定位数。然后,我们通过三种方式改进基本算法:首先,我们采用梯度亚采样策略,同时在固定隐私预算下提供更好的培训性能和较小的沟通成本。其次,我们利用随机旋转作为预处理步骤来减少量化误差。第三,采用了自适应梯度标准上限策略来提高准确性和稳定训练。最后,在基准数据集中证明了拟议框架的实用性。实验结果表明,SQSGD成功地学习了Lenet和Resnet等局部隐私约束的大型模型。此外,凭借固定的隐私和通信水平,SQSGD的性能显着主导了各种基线算法。
translated by 谷歌翻译
机器学习已开始在许多应用中发挥核心作用。这些应用程序中的许多应用程序通常还涉及由于设计约束(例如多元系统)或计算/隐私原因(例如,在智能手机数据上学习),这些数据集分布在多个计算设备/机器上。这样的应用程序通常需要以分散的方式执行学习任务,其中没有直接连接到所有节点的中央服务器。在现实世界中的分散设置中,由于设备故障,网络攻击等,节点容易出现未发现的故障,这可能会崩溃非稳固的学习算法。本文的重点是在发生拜占庭失败的节点的存在下对分散学习的鲁棒化。拜占庭故障模型允许故障节点任意偏离其预期行为,从而确保设计最健壮的算法的设计。但是,与分布式学习相反,对分散学习中拜占庭式的弹性的研究仍处于起步阶段。特别是,现有的拜占庭式分散学习方法要么不能很好地扩展到大规模的机器学习模型,要么缺乏统计收敛性可确保有助于表征其概括错误。在本文中,引入了一个可扩展的,拜占庭式的分散的机器学习框架,称为拜占庭的分散梯度下降(桥梁)。本文中还提供了强烈凸出问题和一类非凸问题的算法和统计收敛保证。此外,使用大规模的分散学习实验来确定桥梁框架是可扩展的,并且为拜占庭式弹性凸和非convex学习提供了竞争结果。
translated by 谷歌翻译
Decentralized bilevel optimization has received increasing attention recently due to its foundational role in many emerging multi-agent learning paradigms (e.g., multi-agent meta-learning and multi-agent reinforcement learning) over peer-to-peer edge networks. However, to work with the limited computation and communication capabilities of edge networks, a major challenge in developing decentralized bilevel optimization techniques is to lower sample and communication complexities. This motivates us to develop a new decentralized bilevel optimization called DIAMOND (decentralized single-timescale stochastic approximation with momentum and gradient-tracking). The contributions of this paper are as follows: i) our DIAMOND algorithm adopts a single-loop structure rather than following the natural double-loop structure of bilevel optimization, which offers low computation and implementation complexity; ii) compared to existing approaches, the DIAMOND algorithm does not require any full gradient evaluations, which further reduces both sample and computational complexities; iii) through a careful integration of momentum information and gradient tracking techniques, we show that the DIAMOND algorithm enjoys $\mathcal{O}(\epsilon^{-3/2})$ in sample and communication complexities for achieving an $\epsilon$-stationary solution, both of which are independent of the dataset sizes and significantly outperform existing works. Extensive experiments also verify our theoretical findings.
translated by 谷歌翻译
在分散的学习中,节点网络协作以最小化通常是其本地目标的有限总和的整体目标函数,并结合了非平滑的正则化术语,以获得更好的泛化能力。分散的随机近端梯度(DSPG)方法通常用于培训这种类型的学习模型,而随机梯度的方差延迟了收敛速率。在本文中,我们提出了一种新颖的算法,即DPSVRG,通过利用方差减少技术来加速分散的训练。基本思想是在每个节点中引入估计器,该节点周期性地跟踪本地完整梯度,以校正每次迭代的随机梯度。通过将分散的算法转换为具有差异减少的集中内隙近端梯度算法,并控制错误序列的界限,我们证明了DPSVRG以o(1 / t)$的速率收敛于一般凸起目标加上非平滑术语以$ t $作为迭代的数量,而dspg以$ o(\ frac {1} {\ sqrt {t}})$汇聚。我们对不同应用,网络拓扑和学习模型的实验表明,DPSVRG会收敛于DSPG的速度要快得多,DPSVRG的损耗功能与训练时期顺利降低。
translated by 谷歌翻译
在本文中,我们考虑了在$ N $代理的分布式优化问题,每个都具有本地成本函数,协作最小化连接网络上的本地成本函数的平均值。为了解决问题,我们提出了一种分布式随机重新洗脱(D-RR)算法,该算法结合了经典分布式梯度下降(DGD)方法和随机重新洗脱(RR)。我们表明D-RR继承了RR的优越性,以使光滑强凸和平的非凸起目标功能。特别是,对于平稳强凸的目标函数,D-RR在平方距离方面实现$ \ Mathcal {o}(1 / T ^ 2)$汇率(这里,$ t $计算迭代总数)在迭代和独特的最小化之间。当假设客观函数是平滑的非凸块并且具有Lipschitz连续组件函数时,我们将D-RR以$ \ Mathcal {O}的速率驱动到0美元的平方标准(1 / T ^ {2 / 3})$。这些收敛结果与集中式RR(最多常数因素)匹配。
translated by 谷歌翻译
近年来,由于它们在对点对点网络上的分散性学习问题(例如,多机构元学习,多机构的多方强化增强学习学习)上,分散的双层优化问题在网络和机器学习社区中引起了越来越多的关注。 ,个性化的培训和拜占庭的弹性学习)。但是,对于具有有限的计算和通信功能的对等网络上的分散式双层优化,如何实现低样本和通信复杂性是迄今为止尚未探索的两个基本挑战。在本文中,我们首次尝试研究了分别与外部和内部子问题相对应的非凸和强结构结构的分散双重优化问题。本文中我们的主要贡献是两倍:i)我们首先提出了一种称为Interact的确定性算法(Inter-gradient-descent-out-outer-tracked-gradeent),需要$ \ Mathcal {o}的样品复杂性(n \ epsilon) ^{ - 1})$和$ \ mathcal {o}的通信复杂性(\ epsilon^{ - 1})$解决双重优化问题,其中$ n $和$ \ epsilon> 0 $是样本的数量在每个代理和所需的平稳性差距上。 ii)为了放宽每次迭代中进行全面梯度评估的需求,我们提出了一个随机方差的互动版本(SVR Interact),该版本将样品复杂性提高到$ \ Mathcal {o}(\ sqrt {n} \ epsilon ^{ - 1})$在达到与确定算法相同的通信复杂性时。据我们所知,这项工作是第一个实现低样本和通信复杂性,以解决网络上的分散双层优化问题。我们的数值实验也证实了我们的理论发现。
translated by 谷歌翻译
本文着重于通过分散网络的在线内核学习。网络中的每个代理都会在本地接收连续流数据,并协同工作以学习一个非线性预测函数,该功能在复制的内核希尔伯特空间中相对于所有代理的总瞬时成本而言是最佳的。为了规避传统在线内核学习中维度问题的诅咒,我们利用随机功能(RF)映射将非参数内核学习问题转换为RF空间中的固定长度参数。然后,我们建议通过线性化ADMM(ODKLA)有效地解决在线分散的内核内核学习问题,提出一个名为在线分散内核学习的新颖学习框架。为了进一步提高沟通效率,我们在通信阶段添加了量化和审查策略,并开发了量化和通信的ODKLA(QC-ODKLA)算法。从理论上讲,我们证明了Odkla和Qc-odkla都可以在$ t $ time插槽上实现最佳的Sublinear后悔$ \ Mathcal {O}(\ sqrt {t})$。通过数值实验,我们评估了所提出方法的学习效率,沟通和计算效率。
translated by 谷歌翻译
在本文中,我们提出了一种一阶分布式优化算法,该算法对拜占庭式失败 - 肢体和潜在的对抗性行为非常强大,在该行为中,所有参与的药物都容易发生失败。我们随着时间的推移将每个代理的状态建模为两国马尔可夫链,该链在不同时间时指示拜占庭或可信赖的行为。我们在任何给定时间均未设置对拜占庭代理的最大数量的限制。我们根据三层防御设计我们的方法:1)时间稳健聚集,2)空间稳健聚集和3)梯度归一化。我们研究了两个用于随机优化的设置,即样品平均近似值和随机近似。我们提供了强烈凸出和平滑非凸成本功能的方法的收敛保证。
translated by 谷歌翻译
我们考虑分散的优化问题,其中许多代理通过在基础通信图上交换来最大程度地减少其本地功能的平均值。具体而言,我们将自己置于异步模型中,其中只有一个随机部分在每次迭代时执行计算,而信息交换可以在所有节点之间进行,并以不对称的方式进行。对于此设置,我们提出了一种算法,该算法结合了整个网络上梯度跟踪和差异的差异。这使每个节点能够跟踪目标函数梯度的平均值。我们的理论分析表明,在预期混合矩阵的轻度连通性条件下,当局部目标函数强烈凸面时,算法会汇聚。特别是,我们的结果不需要混合矩阵是双随机的。在实验中,我们研究了一种广播机制,该机制将信息从计算节点传输到其邻居,并确认我们方法在合成和现实世界数据集上的线性收敛性。
translated by 谷歌翻译
在分布式深度学习的背景下,陈旧的权重或梯度的问题可能导致算法性能差。这个问题通常通过延迟耐受算法来解决,并在目标函数和步进尺寸上有一些温和的假设。在本文中,我们提出了一种不同的方法来开发一种新算法,称为$ \ textbf {p} $ redicting $ \ textbf {c} $ lipping $ \ textbf {a} $ synchronous $ \ textbf {s} textbf {g} $ radient $ \ textbf {d} $ escent(aka,pc-asgd)。具体而言,PC -ASGD有两个步骤 - $ \ textIt {预测步骤} $利用泰勒扩展利用梯度预测来减少过时的权重的稳固性,而$ \ textit {clivipping step} $选择性地降低了过时的权重,以减轻过时的权重他们的负面影响。引入权衡参数以平衡这两个步骤之间的影响。从理论上讲,考虑到平滑的物镜函数弱键和非凸的延迟延迟的延迟,我们介绍了收敛速率。还提出了一种实用的PC-ASGD变体,即采用条件来帮助确定权衡参数。对于经验验证,我们在两个基准数据集上使用两个深神经网络体系结构演示了该算法的性能。
translated by 谷歌翻译
分散和联合学习的关键挑战之一是设计算法,这些算法有效地处理跨代理商的高度异构数据分布。在本文中,我们在数据异质性下重新审视分散的随机梯度下降算法(D-SGD)的分析。我们在D-SGD的收敛速率上展示了新数量的关键作用,称为\ emph {邻居异质性}。通过结合通信拓扑结构和异质性,我们的分析阐明了这两个分散学习中这两个概念之间的相互作用较低。然后,我们认为邻里的异质性提供了一种自然标准,可以学习数据依赖性拓扑结构,以减少(甚至可以消除)数据异质性对D-SGD收敛时间的有害影响。对于与标签偏度分类的重要情况,我们制定了学习这样一个良好拓扑的问题,例如我们使用Frank-Wolfe算法解决的可拖动优化问题。如一组模拟和现实世界实验所示,我们的方法提供了一种设计稀疏拓扑的方法,可以在数据异质性下平衡D-SGD的收敛速度和D-SGD的触电沟通成本。
translated by 谷歌翻译