由于3D对象检测和2D MOT的快速发展,3D多对象跟踪(MOT)已取得了巨大的成就。最近的高级工作通常采用一系列对象属性,例如位置,大小,速度和外观,以提供3D MOT的关联线索。但是,由于某些视觉噪音,例如遮挡和模糊,这些提示可能无法可靠,从而导致跟踪性能瓶颈。为了揭示困境,我们进行了广泛的经验分析,以揭示每个线索的关键瓶颈及其彼此之间的相关性。分析结果激发了我们有效地吸收所有线索之间的优点,并适应性地产生最佳的应对方式。具体而言,我们提出位置和速度质量学习,该学习有效地指导网络估计预测对象属性的质量。基于这些质量估计,我们提出了一种质量意识的对象关联(QOA)策略,以利用质量得分作为实现强大关联的重要参考因素。尽管具有简单性,但广泛的实验表明,提出的策略可显着提高2.2%的AMOTA跟踪性能,而我们的方法的表现优于所有现有的最先进的Nuscenes上的最新作品。此外,Qtrack在Nuscenes验证和测试集上实现了48.0%和51.1%的AMOTA跟踪性能,这大大降低了纯摄像头和基于LIDAR的跟踪器之间的性能差距。
translated by 谷歌翻译
To track the 3D locations and trajectories of the other traffic participants at any given time, modern autonomous vehicles are equipped with multiple cameras that cover the vehicle's full surroundings. Yet, camera-based 3D object tracking methods prioritize optimizing the single-camera setup and resort to post-hoc fusion in a multi-camera setup. In this paper, we propose a method for panoramic 3D object tracking, called CC-3DT, that associates and models object trajectories both temporally and across views, and improves the overall tracking consistency. In particular, our method fuses 3D detections from multiple cameras before association, reducing identity switches significantly and improving motion modeling. Our experiments on large-scale driving datasets show that fusion before association leads to a large margin of improvement over post-hoc fusion. We set a new state-of-the-art with 12.6% improvement in average multi-object tracking accuracy (AMOTA) among all camera-based methods on the competitive NuScenes 3D tracking benchmark, outperforming previously published methods by 6.5% in AMOTA with the same 3D detector.
translated by 谷歌翻译
在这项研究中,我们提出了一个新的3D对象检测器,具有可信赖的深度估计,称为bevdepth,用于基于摄像机的鸟类视图(BEV)3D对象检测。通过对最近方法的彻底分析,我们发现没有摄像头信息的深度估计是隐式学习的,这使其成为创建以下伪点云的事实伪造深度。使用编码的内在和外在参数,BevDepth获得了明确的深度监督。进一步引入了深度校正子网络,以抵消深度地面真理中的投影引起的干扰。为了减少速度瓶颈,同时使用估计的深度将功能从图像视图投影到BEV中,还提出了快速的视频转换操作。此外,我们的bevdepth可以通过多帧的输入轻松扩展。 Bevdepth没有任何铃铛和哨子,可以在具有挑战性的Nuscenes测试套装上实现新的最新60.0%NDS,同时保持高效率。相机和激光雷达之间的性能差距首次在10%NDS之内大大降低。
translated by 谷歌翻译
移动对象(DATMO)的检测和跟踪是自动驾驶环境感知的重要组成部分。虽然使用环绕视图摄像机的3D检测器只是蓬勃发展,但越来越多的趋势是使用不同的基于变压器的方法从透视图的2D特征图中学习3D空间中的查询。本文提出了稀疏的R-CNN 3D(SRCN3D),这是一种新颖的两阶段全横向卷积映射管道,用于环绕视图摄像机检测和跟踪。 SRCN3D采用了级联结构,具有固定数量的提案盒和提案潜在功能的双轨更新。预计提案框可以透视视图,以汇总感兴趣的区域(ROI)本地特征。基于此,提案功能通过动态实例交互式头部进行完善,然后生成分类,并应用于原始边界框。与先前的艺术相比,我们的稀疏功能采样模块仅利用本地2D功能来调整每个相应的3D提案盒,从而导致完整的稀疏范式。提案功能和外观特征均在数据关联过程中采用多刺激性3D多对象跟踪方法。 Nuscenes数据集的广泛实验证明了我们提出的SRCN3D检测器和跟踪器的有效性。代码可在https://github.com/synsin0/srcn3d上找到。
translated by 谷歌翻译
多对象跟踪(MOT)是最基本的计算机视觉任务之一,它有助于各种视频分析应用程序。尽管最近取得了有希望的进展,但当前的MOT研究仍仅限于输入流的固定采样帧速率。实际上,我们从经验上发现,当输入帧速率变化时,所有最新最新跟踪器的准确性都会急剧下降。对于更智能的跟踪解决方案,我们将研究工作的注意力转移到了帧速率不可知MOT(FRAMOT)的问题上。在本文中,我们建议使用定期培训计划(FAPS)的帧速率不可知的MOT框架,以首次解决FRAMOT问题。具体而言,我们提出了一个帧速率不可知协会模块(FAAM),该模块(FAAM)渗透并编码帧速率信息,以帮助跨多帧速率输入的身份匹配,从而提高了学习模型在处理FRAMOT中复杂的运动体验关系方面的能力。此外,FRAMOT中训练和推理之间的关联差距扩大,因为训练中未包含的那些后处理步骤在较低的帧速率方案中产生了更大的影响。为了解决这个问题,我们建议定期培训计划(PTS),以通过跟踪模式匹配和融合来反映培训中的所有后处理步骤。除了提出的方法外,我们首次尝试以两种不同的模式(即已知的帧速率和未知帧速率)建立这项新任务的评估方法,旨在处理更复杂的情况。在具有挑战性的MOT数据集(FRAMOT版本)上进行的定量实验清楚地表明,所提出的方法可以更好地处理不同的帧速率,从而改善对复杂情况的鲁棒性。
translated by 谷歌翻译
与LIDAR相比,相机和雷达传感器在成本,可靠性和维护方面具有显着优势。现有的融合方法通常融合了结果级别的单个模式的输出,称为后期融合策略。这可以通过使用现成的单传感器检测算法受益,但是晚融合无法完全利用传感器的互补特性,因此尽管相机雷达融合的潜力很大,但性能有限。在这里,我们提出了一种新颖的提案级早期融合方法,该方法有效利用了相机和雷达的空间和上下文特性,用于3D对象检测。我们的融合框架首先将图像建议与极坐标系中的雷达点相关联,以有效处理坐标系和空间性质之间的差异。将其作为第一阶段,遵循连续的基于交叉注意的特征融合层在相机和雷达之间自适应地交换时尚信息,从而导致强大而专心的融合。我们的摄像机雷达融合方法可在Nuscenes测试集上获得最新的41.1%地图,而NDS则达到52.3%,比仅摄像机的基线高8.7和10.8点,并在竞争性能上提高竞争性能LIDAR方法。
translated by 谷歌翻译
与周围摄像机的3D对象检测是自动驾驶的有希望的方向。在本文中,我们提出了Simmod,这是用于解决问题的多相对象检测的简单基线。为了合并多视图信息,并基于以前对单眼3D对象检测的努力,该框架建立在样本的对象建议基础上,并旨在以两阶段的方式工作。首先,我们提取多尺度特征,并在每个单眼图像上生成透视对象建议。其次,多视图提案进行了汇总,然后在DETR3D式中使用多视图和多尺度视觉特征进行迭代完善。精制的提案被端到端解码为检测结果。为了进一步提高性能,我们将辅助分支与提案生成并列以增强特征学习。此外,我们设计了目标过滤和教师强迫的方法,以促进两阶段训练的一致性。我们对Nuscenes的3D对象检测基准进行了广泛的实验,以证明Simmod的有效性并实现新的最新性能。代码将在https://github.com/zhangyp15/simmod上找到。
translated by 谷歌翻译
将对象检测和ID嵌入提取到统一网络的单次多对象跟踪,近年来取得了开创性的结果。然而,目前的单次追踪器仅依赖于单帧检测来预测候选界限盒,当面对灾难性的视觉下降时,例如运动模糊,闭塞时可能是不可靠的。一旦检测器错误地被错误地归类为背景,将不再维护其相应的ROCKLET的时间一致性。在本文中,我们首先通过提出重新检查网络恢复被错误分类为“假背景”的边界框。重新检查网络创新地扩展了ID从数据关联嵌入ID的角色,以通过有效地将先前的轨迹传播到具有小开销的当前帧的运动预测。请注意,传播结果由独立和有效的嵌入搜索产生,防止模型过度依赖于检测结果。最终,它有助于重新加载“假背景”并修复破碎的Tracklet。在强大的基线Cstrack上建立一个新的单次追踪器,分别通过70.7 $ 76.4,70.6 $ \右前场达到76.3美元的MOT17和MOT17。它还达到了新的最先进的Mota和IDF1性能。代码在https://github.com/judasdie/sots发布。
translated by 谷歌翻译
Tracking has traditionally been the art of following interest points through space and time. This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by pipelines that perform object detection followed by temporal association, also known as tracking-by-detection. We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art. Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame. Given this minimal input, CenterTrack localizes objects and predicts their associations with the previous frame. That's it. CenterTrack is simple, online (no peeking into the future), and real-time. It achieves 67.8% MOTA on the MOT17 challenge at 22 FPS and 89.4% MOTA on the KITTI tracking benchmark at 15 FPS, setting a new state of the art on both datasets. CenterTrack is easily extended to monocular 3D tracking by regressing additional 3D attributes. Using monocular video input, it achieves 28.3% AMOTA@0.2 on the newly released nuScenes 3D tracking benchmark, substantially outperforming the monocular baseline on this benchmark while running at 28 FPS.
translated by 谷歌翻译
在深度感知的固有歧义的范围内,现代相机的3D对象检测方法属于性能瓶颈。从直觉上讲,利用时间多视角立体声(MVS)技术是解决这种歧义的自然知识。但是,在适用于3D对象检测场景时,MV的传统尝试在两个方面存在缺陷:1)所有观点之间的亲和力测量遭受昂贵的计算成本; 2)很难处理经常移动物体的室外场景。为此,我们引入了一种有效的时间立体声方法,以动态选择匹配候选者的尺度,从而显着减少计算开销。更进一步,我们设计了一种迭代算法,以更新更有价值的候选人,使其适应移动候选人。我们将我们提出的方法实例化,以进行多视图3D检测器,即Bevstereo。 Bevstereo在Nuscenes数据集的仅相机轨道上实现了新的最先进的性能(即52.5%地图和61.0%NDS)。同时,广泛的实验反映了我们的方法比当代MVS方法更好地处理复杂的室外场景。代码已在https://github.com/megvii astection/bevstereo上发布。
translated by 谷歌翻译
自主驾驶的感知模型需要在低潜伏期内快速推断。尽管现有作品忽略了处理后不可避免的环境变化,但流媒体感知将延迟和准确性共同评估为视频在线感知的单个度量标准,从而指导先前的工作以搜索准确性和速度之间的权衡。在本文中,我们探讨了该指标上实时模型的性能,并赋予模型预测未来的能力,从而显着改善了流媒体感知的结果。具体来说,我们构建了一个具有两个有效模块的简单框架。一个是双流感知模块(DFP)。它分别由捕获运动趋势和基本检测特征并行的动态流和静态流动。趋势意识损失(TAL)是另一个模块,它以其移动速度适应每个对象的体重。实际上,我们考虑了多个速度驾驶场景,并进一步提出了含量不足的流媒体AP(VSAP)以共同评估准确性。在这种现实的环境中,我们设计了一种有效的混合速度训练策略,以指导检测器感知任何速度。我们的简单方法与强大的基线相比,在Argoverse-HD数据集上实现了最先进的性能,并将SAP和VSAP分别提高了4.7%和8.2%,从而验证了其有效性。
translated by 谷歌翻译
本文旨在解决多个对象跟踪(MOT),这是计算机视觉中的一个重要问题,但由于许多实际问题,尤其是阻塞,因此仍然具有挑战性。确实,我们提出了一种新的实时深度透视图 - 了解多个对象跟踪(DP-MOT)方法,以解决MOT中的闭塞问题。首先提出了一个简单但有效的主题深度估计(SODE),以在2D场景中自动以无监督的方式自动订购检测到的受试者的深度位置。使用SODE的输出,提出了一个新的活动伪3D KALMAN滤波器,即具有动态控制变量的Kalman滤波器的简单但有效的扩展,以动态更新对象的运动。此外,在数据关联步骤中提出了一种新的高阶关联方法,以合并检测到的对象之间的一阶和二阶关系。与标准MOT基准的最新MOT方法相比,提出的方法始终达到最先进的性能。
translated by 谷歌翻译
以前的在线3D多对象跟踪(3DMOT)方法在与几帧的新检测无关时终止ROCKET。但是如果一个物体刚刚变暗,就像被其他物体暂时封闭或者只是从FOV暂时封闭一样,过早地终止ROCKET将导致身份切换。我们揭示了过早的轨迹终端是现代3DMOT系统中身份开关的主要原因。为了解决这个问题,我们提出了一个不朽的跟踪器,一个简单的跟踪系统,它利用轨迹预测来维护对象变暗的物体的轨迹。我们使用一个简单的卡尔曼滤波器进行轨迹预测,并在目标不可见时通过预测保留轨迹。通过这种方法,我们可以避免由过早托管终止产生的96%的车辆标识开关。如果没有任何学习的参数,我们的方法在Waymo Open DataSet测试集上的车载类别的0.0001级和竞争Mota处实现了不匹配的比率。我们的不匹配比率比任何先前发表的方法低一倍。在NUSCENes上报告了类似的结果。我们相信拟议的不朽追踪器可以为推动3DMOT的极限提供简单而强大的解决方案。我们的代码可在https://github.com/immortaltracker/immortaltracker中找到。
translated by 谷歌翻译
3D多对象跟踪(MOT)确保在连续动态检测过程中保持一致性,有利于自动驾驶中随后的运动计划和导航任务。但是,基于摄像头的方法在闭塞情况下受到影响,准确跟踪基于激光雷达的方法的对象的不规则运动可能是具有挑战性的。某些融合方法效果很好,但不认为在遮挡下出现外观特征的不可信问题。同时,错误检测问题也显着影响跟踪。因此,我们根据组合的外观运动优化(Camo-Mot)提出了一种新颖的相机融合3D MOT框架,该框架使用相机和激光镜数据,并大大减少了由遮挡和错误检测引起的跟踪故障。对于遮挡问题,我们是第一个提出遮挡头来有效地选择最佳对象外观的人,从而减少了闭塞的影响。为了减少错误检测在跟踪中的影响,我们根据置信得分设计一个运动成本矩阵,从而提高了3D空间中的定位和对象预测准确性。由于现有的多目标跟踪方法仅考虑一个类别,因此我们还建议建立多类损失,以在多类别场景中实现多目标跟踪。在Kitti和Nuscenes跟踪基准测试上进行了一系列验证实验。我们提出的方法在KITTI测试数据集上的所有多模式MOT方法中实现了最先进的性能和最低的身份开关(IDS)值(CAR为23,行人为137)。并且我们提出的方法在Nuscenes测试数据集上以75.3%的AMOTA进行了所有算法中的最新性能。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
多对象跟踪(MOT)的目标是检测和跟踪场景中的所有对象,同时为每个对象保留唯一的标识符。在本文中,我们提出了一种新的可靠的最新跟踪器,该跟踪器可以结合运动和外观信息的优势,以及摄像机运动补偿以及更准确的Kalman滤波器状态矢量。我们的新跟踪器在Mot17和Mot20测试集的Motchallenge [29,11]的数据集[29,11]中,Bot-Sort-Reid排名第一,就所有主要MOT指标而言:MOTA,IDF1和HOTA。对于Mot17:80.5 Mota,80.2 IDF1和65.0 HOTA。源代码和预培训模型可在https://github.com/niraharon/bot-sort上找到
translated by 谷歌翻译
3D多对象跟踪(MOT)近年来目睹了众多新颖的基准和方法,尤其是那些在“逐侦测”范式下的基准。尽管他们的进步和有用,但对他们的优势和劣势的深入分析尚不可用。在本文中,我们通过将它们分解为四个组成部分来总结当前的3D MOL方法:检测,关联,运动模型和生命周期管理的预处理。然后,我们将现有算法的故障情况归因于每个组件并详细研究它们。基于分析,我们提出了相应的改进,导致强大但简单的基线:简单进展。 Waymo Open DataSet和Nuscenes上的综合实验结果表明,我们的最终方法可以通过微小的修改来实现新的最先进的结果。此外,我们采取额外的步骤并重新思考当前的基准面是否真实地反映了真实挑战的算法能力。我们深入了解现有基准的细节,并找到一些有趣的事实。最后,我们分析了\ name \中剩余失败的分布和原因,并提出了3D MOT的未来方向。我们的代码可在https://github.com/tusimple/simpletrack获得。
translated by 谷歌翻译
3D对象检测是各种实际应用所需的重要功能,例如驾驶员辅助系统。单眼3D检测作为基于图像的方法的代表性的常规设置,提供比依赖Lidars的传统设置更经济的解决方案,但仍然产生不令人满意的结果。本文首先提出了对这个问题的系统研究。我们观察到,目前的单目3D检测可以简化为实例深度估计问题:不准确的实例深度阻止所有其他3D属性预测改善整体检测性能。此外,最近的方法直接估计基于孤立的实例或像素的深度,同时忽略不同对象的几何关系。为此,我们在跨预测对象构建几何关系图,并使用该图来促进深度估计。随着每个实例的初步深度估计通常在这种不均匀的环境中通常不准确,我们纳入了概率表示以捕获不确定性。它提供了一个重要的指标,以确定自信的预测并进一步引导深度传播。尽管基本思想的简单性,但我们的方法,PGD对基蒂和NUSCENES基准的显着改进,尽管在所有单眼视觉的方法中实现了第1个,同时仍保持实时效率。代码和模型将在https://github.com/open-mmlab/mmdetection3d发布。
translated by 谷歌翻译
对象运动和对象外观是多个对象跟踪(MOT)应用中的常用信息,用于将帧跨越帧的检测相关联,或用于联合检测和跟踪方法的直接跟踪预测。然而,不仅是这两种类型的信息通常是单独考虑的,而且它们也没有帮助直接从当前感兴趣帧中使用视觉信息的用法。在本文中,我们提出了PatchTrack,一种基于变压器的联合检测和跟踪系统,其使用当前感兴趣的帧帧的曲线预测曲目。我们使用卡尔曼滤波器从前一帧预测当前帧中的现有轨道的位置。从预测边界框裁剪的补丁被发送到变压器解码器以推断新曲目。通过利用在补丁中编码的对象运动和对象外观信息,所提出的方法将更多地关注新曲目更有可能发生的位置。我们展示了近期MOT基准的Patchtrack的有效性,包括MOT16(MOTA 73.71%,IDF1 65.77%)和MOT17(MOTA 73.59%,IDF1 65.23%)。结果在https://motchallenge.net/method/mot=4725&chl=10上发布。
translated by 谷歌翻译
多任务学习的最新研究揭示了解决单个神经网络中相关问题的好处。 3D对象检测和多对象跟踪(MOT)是两个严重的相互交织的问题,可以预测并关联整个时间的对象实例位置。但是,3D MOT中的大多数先前作品都将检测器视为先前的分离管道,不一致地将检测器的输出作为跟踪器的输入。在这项工作中,我们提出了Minkowski Tracker,这是一种稀疏的时空R-CNN,可以共同解决对象检测和跟踪。受基于区域的CNN(R-CNN)的启发,我们建议将跟踪作为对象检测器R-CNN的第二阶段,该跟踪预测了轨道的分配概率。首先,Minkowski Tracker将4D点云作为输入,以生成时空鸟的视图(BEV)特征通过4D稀疏卷积编码器网络。然后,我们提出的TrackAlign聚集了BEV功能的轨道区域(ROI)功能。最后,Minkowski Tracker根据ROI功能预测的检测到追踪匹配概率更新了跟踪及其置信得分。我们在大规模实验中显示,我们方法的总体性能增益是由于四个因素:1。4D编码器的时间推理提高了检测性能2.对象检测的多任务学习和MOT共同增强了彼此3.检测到轨道比赛得分学习隐式运动模型以增强轨道分配4.检测到轨道匹配分数提高了轨道置信度得分的质量。结果,Minkowski Tracker在没有手工设计的运动模型的情况下实现了Nuscenes数据集跟踪任务上的最新性能。
translated by 谷歌翻译