与LIDAR相比,相机和雷达传感器在成本,可靠性和维护方面具有显着优势。现有的融合方法通常融合了结果级别的单个模式的输出,称为后期融合策略。这可以通过使用现成的单传感器检测算法受益,但是晚融合无法完全利用传感器的互补特性,因此尽管相机雷达融合的潜力很大,但性能有限。在这里,我们提出了一种新颖的提案级早期融合方法,该方法有效利用了相机和雷达的空间和上下文特性,用于3D对象检测。我们的融合框架首先将图像建议与极坐标系中的雷达点相关联,以有效处理坐标系和空间性质之间的差异。将其作为第一阶段,遵循连续的基于交叉注意的特征融合层在相机和雷达之间自适应地交换时尚信息,从而导致强大而专心的融合。我们的摄像机雷达融合方法可在Nuscenes测试集上获得最新的41.1%地图,而NDS则达到52.3%,比仅摄像机的基线高8.7和10.8点,并在竞争性能上提高竞争性能LIDAR方法。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
雷达和摄像机多模式融合的环境感知对于自动驾驶至关重要,以提高准确性,完整性和稳健性。本文着重于如何利用毫米波(MMW)雷达和相机传感器融合进行3D对象检测。提出了一种新的方法,该方法在提出了更好的特征表示形式下意识到在鸟眼视图(BEV)下的特征级融合。首先,将雷达特征通过时间积累增强,并发送到时间空间编码器以进行雷达特征提取。同时,通过图像骨干和颈部模型获得了适应各种空间尺度的多尺度图像2D特征。然后,将图像功能转换为使用设计的视图变压器。此外,这项工作将多模式特征与称为点融合和ROI融合的两阶段融合模型融合在一起。最后,检测头会回归对象类别和3D位置。实验结果表明,所提出的方法在最重要的检测指标,平均平均精度(MAP)和NUSCENES检测分数(NDS)下实现了最先进的性能。
translated by 谷歌翻译
基于查询的变压器在许多图像域任务中构建长期注意力方面表现出了巨大的潜力,但是由于点云数据的压倒性大小,在基于激光雷达的3D对象检测中很少考虑。在本文中,我们提出了CenterFormer,这是一个基于中心的变压器网络,用于3D对象检测。 CenterFormer首先使用中心热图在基于标准的Voxel点云编码器之上选择中心候选者。然后,它将中心候选者的功能用作变压器中的查询嵌入。为了进一步从多个帧中汇总功能,我们通过交叉注意设计一种方法来融合功能。最后,添加回归头以预测输出中心功能表示形式上的边界框。我们的设计降低了变压器结构的收敛难度和计算复杂性。结果表明,与无锚对象检测网络的强基线相比,有了显着改善。 CenterFormer在Waymo Open数据集上实现了单个模型的最新性能,验证集的MAPH为73.7%,测试集的MAPH上有75.6%的MAPH,大大优于所有先前发布的CNN和基于变压器的方法。我们的代码可在https://github.com/tusimple/centerformer上公开获取
translated by 谷歌翻译
移动对象(DATMO)的检测和跟踪是自动驾驶环境感知的重要组成部分。虽然使用环绕视图摄像机的3D检测器只是蓬勃发展,但越来越多的趋势是使用不同的基于变压器的方法从透视图的2D特征图中学习3D空间中的查询。本文提出了稀疏的R-CNN 3D(SRCN3D),这是一种新颖的两阶段全横向卷积映射管道,用于环绕视图摄像机检测和跟踪。 SRCN3D采用了级联结构,具有固定数量的提案盒和提案潜在功能的双轨更新。预计提案框可以透视视图,以汇总感兴趣的区域(ROI)本地特征。基于此,提案功能通过动态实例交互式头部进行完善,然后生成分类,并应用于原始边界框。与先前的艺术相比,我们的稀疏功能采样模块仅利用本地2D功能来调整每个相应的3D提案盒,从而导致完整的稀疏范式。提案功能和外观特征均在数据关联过程中采用多刺激性3D多对象跟踪方法。 Nuscenes数据集的广泛实验证明了我们提出的SRCN3D检测器和跟踪器的有效性。代码可在https://github.com/synsin0/srcn3d上找到。
translated by 谷歌翻译
与周围摄像机的3D对象检测是自动驾驶的有希望的方向。在本文中,我们提出了Simmod,这是用于解决问题的多相对象检测的简单基线。为了合并多视图信息,并基于以前对单眼3D对象检测的努力,该框架建立在样本的对象建议基础上,并旨在以两阶段的方式工作。首先,我们提取多尺度特征,并在每个单眼图像上生成透视对象建议。其次,多视图提案进行了汇总,然后在DETR3D式中使用多视图和多尺度视觉特征进行迭代完善。精制的提案被端到端解码为检测结果。为了进一步提高性能,我们将辅助分支与提案生成并列以增强特征学习。此外,我们设计了目标过滤和教师强迫的方法,以促进两阶段训练的一致性。我们对Nuscenes的3D对象检测基准进行了广泛的实验,以证明Simmod的有效性并实现新的最新性能。代码将在https://github.com/zhangyp15/simmod上找到。
translated by 谷歌翻译
我们提出了DeepFusion,这是一种模块化的多模式结构,可在不同组合中以3D对象检测为融合激光雷达,相机和雷达。专门的功能提取器可以利用每种模式,并且可以轻松交换,从而使该方法变得简单而灵活。提取的特征被转化为鸟眼视图,作为融合的共同表示。在特征空间中融合方式之前,先进行空间和语义对齐。最后,检测头利用丰富的多模式特征,以改善3D检测性能。 LIDAR相机,激光摄像头雷达和摄像头融合的实验结果显示了我们融合方法的灵活性和有效性。在此过程中,我们研究了高达225米的遥远汽车检测的很大程度上未开发的任务,显示了激光摄像机融合的好处。此外,我们研究了3D对象检测的LIDAR点所需的密度,并在对不利天气条件的鲁棒性示例中说明了含义。此外,对我们的摄像头融合的消融研究突出了准确深度估计的重要性。
translated by 谷歌翻译
现有的最佳3D对象检测器通常依赖于多模式融合策略。但是,由于忽略了特定于模式的有用信息,因此从根本上限制了该设计,并最终阻碍了模型性能。为了解决这一局限性,在这项工作中,我们介绍了一种新型的模式相互作用策略,在该策略中,在整个过程中学习和维护单个单模式表示,以使其在物体检测过程中被利用其独特特征。为了实现这一建议的策略,我们设计了一个深层互动体系结构,其特征是多模式代表性交互编码器和多模式预测交互解码器。大规模Nuscenes数据集的实验表明,我们所提出的方法经常超过所有先前的艺术。至关重要的是,我们的方法在竞争激烈的Nuscenes对象检测排行榜上排名第一。
translated by 谷歌翻译
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A 2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A 2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.
translated by 谷歌翻译
3D视觉感知任务,包括基于多相机图像的3D检测和MAP分割,对于自主驾驶系统至关重要。在这项工作中,我们提出了一个称为BeVformer的新框架,该框架以时空变压器学习统一的BEV表示,以支持多个自主驾驶感知任务。简而言之,Bevormer通过通过预定义的网格形BEV查询与空间和时间空间进行交互来利用空间和时间信息。为了汇总空间信息,我们设计了空间交叉注意,每个BEV查询都从相机视图中从感兴趣的区域提取了空间特征。对于时间信息,我们提出暂时的自我注意力,以将历史bev信息偶尔融合。我们的方法在Nuscenes \ texttt {test} set上,以NDS度量为单位达到了新的最新56.9 \%,该设置比以前的最佳艺术高9.0分,并且与基于LIDAR的盆地的性能相当。我们进一步表明,BeVormer明显提高了速度估计的准确性和在低可见性条件下对象的回忆。该代码可在\ url {https://github.com/zhiqi-li/bevformer}中获得。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Fusing the camera and LiDAR information has become a de-facto standard for 3D object detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to leverage the feature from the image space. However, people discovered that this underlying assumption makes the current fusion framework infeasible to produce any prediction when there is a LiDAR malfunction, regardless of minor or major. This fundamentally limits the deployment capability to realistic autonomous driving scenarios. In contrast, we propose a surprisingly simple yet novel fusion framework, dubbed BEVFusion, whose camera stream does not depend on the input of LiDAR data, thus addressing the downside of previous methods. We empirically show that our framework surpasses the state-of-the-art methods under the normal training settings. Under the robustness training settings that simulate various LiDAR malfunctions, our framework significantly surpasses the state-of-the-art methods by 15.7% to 28.9% mAP. To the best of our knowledge, we are the first to handle realistic LiDAR malfunction and can be deployed to realistic scenarios without any post-processing procedure. The code is available at https://github.com/ADLab-AutoDrive/BEVFusion.
translated by 谷歌翻译
LiDAR and camera are two essential sensors for 3D object detection in autonomous driving. LiDAR provides accurate and reliable 3D geometry information while the camera provides rich texture with color. Despite the increasing popularity of fusing these two complementary sensors, the challenge remains in how to effectively fuse 3D LiDAR point cloud with 2D camera images. Recent methods focus on point-level fusion which paints the LiDAR point cloud with camera features in the perspective view or bird's-eye view (BEV)-level fusion which unifies multi-modality features in the BEV representation. In this paper, we rethink these previous fusion strategies and analyze their information loss and influences on geometric and semantic features. We present SemanticBEVFusion to deeply fuse camera features with LiDAR features in a unified BEV representation while maintaining per-modality strengths for 3D object detection. Our method achieves state-of-the-art performance on the large-scale nuScenes dataset, especially for challenging distant objects. The code will be made publicly available.
translated by 谷歌翻译
Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-theart performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, Center-Point outperforms all previous single model methods by a large margin and ranks first among all Lidar-only submissions. The code and pretrained models are available at https://github.com/tianweiy/CenterPoint.
translated by 谷歌翻译
In this paper we propose to exploit multiple related tasks for accurate multi-sensor 3D object detection. Towards this goal we present an end-to-end learnable architecture that reasons about 2D and 3D object detection as well as ground estimation and depth completion. Our experiments show that all these tasks are complementary and help the network learn better representations by fusing information at various levels. Importantly, our approach leads the KITTI benchmark on 2D, 3D and bird's eye view object detection, while being real-time. * Equal contribution.† Work done as part of Uber AI Residency program.
translated by 谷歌翻译
多传感器融合对于准确可靠的自主驾驶系统至关重要。最近的方法基于点级融合:通过相机功能增强激光雷达点云。但是,摄像头投影抛弃了相机功能的语义密度,阻碍了此类方法的有效性,尤其是对于面向语义的任务(例如3D场景分割)。在本文中,我们用BevFusion打破了这个根深蒂固的惯例,这是一个有效且通用的多任务多任务融合框架。它统一了共享鸟类视图(BEV)表示空间中的多模式特征,该空间很好地保留了几何信息和语义信息。为了实现这一目标,我们通过优化的BEV池进行诊断和提高视图转换中的钥匙效率瓶颈,从而将延迟降低了40倍以上。 BevFusion从根本上是任务不合时宜的,并且无缝支持不同的3D感知任务,几乎没有建筑变化。它在Nuscenes上建立了新的最新技术,在3D对象检测上获得了1.3%的MAP和NDS,而BEV MAP分段中的MIOU高13.6%,计算成本较低1.9倍。可以在https://github.com/mit-han-lab/bevfusion上获得复制我们结果的代码。
translated by 谷歌翻译
由于其在各种领域的广泛应用,3D对象检测正在接受行业和学术界的增加。在本文中,我们提出了从点云的3D对象检测的基于角度基于卷曲区域的卷积神经网络(PV-RCNNS)。首先,我们提出了一种新颖的3D探测器,PV-RCNN,由两个步骤组成:Voxel-to-keyPoint场景编码和Keypoint-to-Grid ROI特征抽象。这两个步骤深入地将3D体素CNN与基于点的集合的集合进行了集成,以提取辨别特征。其次,我们提出了一个先进的框架,PV-RCNN ++,用于更高效和准确的3D对象检测。它由两个主要的改进组成:有效地生产更多代表性关键点的划分的提案中心策略,以及用于更好地聚合局部点特征的vectorpool聚合,具有更少的资源消耗。通过这两种策略,我们的PV-RCNN ++比PV-RCNN快2倍,同时还在具有150米* 150M检测范围内的大型Waymo Open DataSet上实现更好的性能。此外,我们提出的PV-RCNNS在Waymo Open DataSet和高竞争力的基蒂基准上实现最先进的3D检测性能。源代码可在https://github.com/open-mmlab/openpcdet上获得。
translated by 谷歌翻译
利用多模式融合,尤其是在摄像头和激光雷达之间,对于为自动驾驶汽车构建准确且健壮的3D对象检测系统已经至关重要。直到最近,点装饰方法(在该点云中都用相机功能增强,一直是该领域的主要方法。但是,这些方法无法利用来自相机的较高分辨率图像。还提出了最近将摄像头功能投射到鸟类视图(BEV)融合空间的作品,但是它们需要预计数百万像素,其中大多数仅包含背景信息。在这项工作中,我们提出了一种新颖的方法中心功能融合(CFF),其中我们利用相机和激光雷达中心的基于中心的检测网络来识别相关对象位置。然后,我们使用基于中心的检测来识别与对象位置相关的像素功能的位置,这是图像中总数的一小部分。然后将它们投射并融合在BEV框架中。在Nuscenes数据集上,我们的表现优于仅限激光雷达基线的4.9%地图,同时比其他融合方法融合了100倍。
translated by 谷歌翻译
基于LIDAR的传感驱动器电流自主车辆。尽管进展迅速,但目前的激光雷达传感器在分辨率和成本方面仍然落后于传统彩色相机背后的二十年。对于自主驾驶,这意味着靠近传感器的大物体很容易可见,但远方或小物体仅包括一个测量或两个。这是一个问题,尤其是当这些对象结果驾驶危险时。另一方面,在车载RGB传感器中清晰可见这些相同的对象。在这项工作中,我们提出了一种将RGB传感器无缝熔化成基于LIDAR的3D识别方法。我们的方法采用一组2D检测来生成密集的3D虚拟点,以增加否则稀疏的3D点云。这些虚拟点自然地集成到任何基于标准的LIDAR的3D探测器以及常规激光雷达测量。由此产生的多模态检测器简单且有效。大规模NUSCENES数据集的实验结果表明,我们的框架通过显着的6.6地图改善了强大的中心点基线,并且优于竞争融合方法。代码和更多可视化可在https://tianweiy.github.io/mvp/上获得
translated by 谷歌翻译