我们研究了受限的强化学习问题,其中代理的目的是最大程度地提高预期的累积奖励,从而受到对实用程序函数的预期总价值的约束。与现有的基于模型的方法或无模型方法伴随着“模拟器”,我们旨在开发第一个无模型的无模拟算法,即使在大规模系统中,也能够实现sublinear遗憾和透明度的约束侵犯。为此,我们考虑具有线性函数近似的情节约束决策过程,其中过渡动力学和奖励函数可以表示为某些已知功能映射的线性函数。我们表明$ \ tilde {\ mathcal {o}}(\ sqrt {d^3h^3t})$遗憾和$ \ tilde {\ tillcal {\ mathcal {o}}(\ sqrt {d^3h^3ht})$约束$约束$约束可以实现违规范围,其中$ d $是功能映射的尺寸,$ h $是情节的长度,而$ t $是总数的总数。我们的界限是在没有明确估计未知过渡模型或需要模拟器的情况下达到的,并且仅通过特征映射的维度依赖于状态空间。因此,即使国家的数量进入无穷大,我们的界限也会存在。我们的主要结果是通过标准LSVI-UCB算法的新型适应来实现的。特别是,我们首先将原始二次优化引入LSVI-UCB算法中,以在遗憾和违反约束之间取得平衡。更重要的是,我们使用软马克斯政策取代了LSVI-UCB中的状态行动功能的标准贪婪选择。事实证明,这对于通过其近似平滑度的权衡来确定受约束案例的统一浓度是关键。我们还表明,一个人可以达到均匀的约束违规行为,同时仍然保持相同的订单相对于$ t $。
translated by 谷歌翻译
We consider a multi-agent episodic MDP setup where an agent (leader) takes action at each step of the episode followed by another agent (follower). The state evolution and rewards depend on the joint action pair of the leader and the follower. Such type of interactions can find applications in many domains such as smart grids, mechanism design, security, and policymaking. We are interested in how to learn policies for both the players with provable performance guarantee under a bandit feedback setting. We focus on a setup where both the leader and followers are {\em non-myopic}, i.e., they both seek to maximize their rewards over the entire episode and consider a linear MDP which can model continuous state-space which is very common in many RL applications. We propose a {\em model-free} RL algorithm and show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret bounds can be achieved for both the leader and the follower, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps under the bandit feedback information setup. Thus, our result holds even when the number of states becomes infinite. The algorithm relies on {\em novel} adaptation of the LSVI-UCB algorithm. Specifically, we replace the standard greedy policy (as the best response) with the soft-max policy for both the leader and the follower. This turns out to be key in establishing uniform concentration bound for the value functions. To the best of our knowledge, this is the first sub-linear regret bound guarantee for the Markov games with non-myopic followers with function approximation.
translated by 谷歌翻译
Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enormous number of states, where function approximation must be deployed to approximate either the value function or the policy. The introduction of function approximation raises a fundamental set of challenges involving computational and statistical efficiency, especially given the need to manage the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can we design provably efficient RL algorithms that incorporate function approximation? This question persists even in a basic setting with linear dynamics and linear rewards, for which only linear function approximation is needed.This paper presents the first provable RL algorithm with both polynomial runtime and polynomial sample complexity in this linear setting, without requiring a "simulator" or additional assumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration (LSVI)-a classical algorithm frequently studied in the linear setting-achieves O( √ d 3 H 3 T ) regret, where d is the ambient dimension of feature space, H is the length of each episode, and T is the total number of steps. Importantly, such regret is independent of the number of states and actions.
translated by 谷歌翻译
We study reinforcement learning (RL) with linear function approximation. For episodic time-inhomogeneous linear Markov decision processes (linear MDPs) whose transition dynamic can be parameterized as a linear function of a given feature mapping, we propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $\tilde O(d\sqrt{H^3K})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $K$ is the number of episodes. Our algorithm is based on a weighted linear regression scheme with a carefully designed weight, which depends on a new variance estimator that (1) directly estimates the variance of the \emph{optimal} value function, (2) monotonically decreases with respect to the number of episodes to ensure a better estimation accuracy, and (3) uses a rare-switching policy to update the value function estimator to control the complexity of the estimated value function class. Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
translated by 谷歌翻译
我们认为在情节环境中的强化学习(RL)中的遗憾最小化问题。在许多实际的RL环境中,状态和动作空间是连续的或非常大的。现有方法通过随机过渡模型的低维表示或$ q $ functions的近似值来确定遗憾的保证。但是,对国家价值函数的函数近似方案的理解基本上仍然缺失。在本文中,我们提出了一种基于在线模型的RL算法,即CME-RL,该算法将过渡分布的表示形式学习为嵌入在复制的内核希尔伯特领域中的嵌入,同时仔细平衡了利用探索 - 探索权衡取舍。我们通过证明频繁的(最糟糕的)遗憾结束了$ \ tilde {o} \ big(h \ gamma_n \ sqrt {n} \ big)$ \ footnote {$ footnote {$ tilde {$ o}(\ cdot)$仅隐藏绝对常数和poly-logarithmic因素。},其中$ h $是情节长度,$ n $是时间步长的总数,$ \ gamma_n $是信息理论数量国家行动特征空间的有效维度。我们的方法绕过了估计过渡概率的需求,并适用于可以定义内核的任何域。它还为内核方法的一般理论带来了新的见解,以进行近似推断和RL遗憾的最小化。
translated by 谷歌翻译
Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly parameterize and update value functions or policies without explicitly modeling the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that model-free algorithms may require more samples to learn [7,22]. The theoretical question of "whether model-free algorithms can be made sample efficient" is one of the most fundamental questions in RL, and remains unsolved even in the basic scenario with finitely many states and actions.We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves regret Õ( √ H 3 SAT ), where S and A are the numbers of states and actions, H is the number of steps per episode, and T is the total number of steps. This sample efficiency matches the optimal regret that can be achieved by any model-based approach, up to a single √ H factor. To the best of our knowledge, this is the first analysis in the model-free setting that establishes √ T regret without requiring access to a "simulator." * The first two authors contributed equally.
translated by 谷歌翻译
在优化动态系统时,变量通常具有约束。这些问题可以建模为受约束的马尔可夫决策过程(CMDP)。本文考虑了受限制的马尔可夫决策过程(PCMDP),其中代理选择该策略以最大程度地提高有限视野中的总奖励,并在每个时期内满足约束。应用不受约束的问题并应用了基于Q的方法。我们定义了可能正确正确的PCMDP问题的概念(PAC)。事实证明,提出的算法可以实现$(\ epsilon,p)$ - PAC政策,当$ k \ geq \ omega(\ frac {i^2h^6sa \ ell} {\ ell} {\ epsilon^2})$ $ s $和$ a $分别是州和行动的数量。 $ h $是每集时代的数量。 $ i $是约束函数的数量,$ \ ell = \ log(\ frac {sat} {p})$。我们注意到,这是PCMDP的PAC分析的第一个结果,具有峰值约束,其中过渡动力学未知。我们证明了有关能量收集问题和单个机器调度问题的提议算法,该算法接近研究优化问题的理论上限。
translated by 谷歌翻译
获取一阶遗憾界限 - 遗憾的界限不是作为最坏情况,但有一些衡量给定实例的最佳政策的性能 - 是连续决策的核心问题。虽然这种界限存在于许多设置中,但它们在具有大状态空间的钢筋学习中被证明是难以捉摸的。在这项工作中,我们解决了这个差距,并表明可以将遗憾的缩放作为$ \ mathcal {o}(\ sqrt {v_1 ^ \ star})$中的钢筋学习,即用大状态空间,即线性MDP设置。这里$ v_1 ^ \ star $是最佳政策的价值,$ k $是剧集的数量。我们证明基于最小二乘估计的现有技术不足以获得该结果,而是基于强大的Catoni平均估计器制定一种新的稳健自归一化浓度,其可能具有独立兴趣。
translated by 谷歌翻译
强化学习被广泛用于在与环境互动时需要执行顺序决策的应用中。当决策要求包括满足一些安全限制时,问题就变得更加具有挑战性。该问题在数学上是作为约束的马尔可夫决策过程(CMDP)提出的。在文献中,可以通过无模型的方式解决各种算法来解决CMDP问题,以实现$ \ epsilon $ - 最佳的累积奖励,并使用$ \ epsilon $可行的政策。 $ \ epsilon $可行的政策意味着它遭受了违规的限制。这里的一个重要问题是,我们是否可以实现$ \ epsilon $ - 最佳的累积奖励,并违反零约束。为此,我们主张使用随机原始偶对偶方法来解决CMDP问题,并提出保守的随机原始二重算法(CSPDA),该算法(CSPDA)显示出$ \ tilde {\ tilde {\ Mathcal {o}} \ left(1 /\ epsilon^2 \ right)$样本复杂性,以实现$ \ epsilon $ - 最佳累积奖励,违反零约束。在先前的工作中,$ \ epsilon $ - 最佳策略的最佳可用样本复杂性是零约束的策略是$ \ tilde {\ Mathcal {o}}} \ left(1/\ epsilon^5 \ right)$。因此,与最新技术相比,拟议的算法提供了重大改进。
translated by 谷歌翻译
我们研究了基于模型的无奖励加强学习,具有ePiSodic Markov决策过程的线性函数近似(MDP)。在此设置中,代理在两个阶段工作。在勘探阶段,代理商与环境相互作用并在没有奖励的情况下收集样品。在规划阶段,代理商给出了特定的奖励功能,并使用从勘探阶段收集的样品来学习良好的政策。我们提出了一种新的可直接有效的算法,称为UCRL-RFE在线性混合MDP假设,其中MDP的转换概率内核可以通过线性函数参数化,在状态,动作和下一个状态的三联体上定义的某些特征映射上参数化。我们展示了获得$ \ epsilon $-Optimal策略进行任意奖励函数,Ucrl-RFE需要以大多数$ \ tilde {\ mathcal {o}}来进行采样(h ^ 5d ^ 2 \ epsilon ^ { - 2})勘探阶段期间的$派对。在这里,$ H $是集的长度,$ d $是特征映射的尺寸。我们还使用Bernstein型奖金提出了一种UCRL-RFE的变种,并表明它需要在大多数$ \ TINDE {\ MATHCAL {o}}(H ^ 4D(H + D)\ epsilon ^ { - 2})进行样本$达到$ \ epsilon $ -optimal政策。通过构建特殊类的线性混合MDPS,我们还证明了对于任何无奖励算法,它需要至少为$ \ TINDE \ OMEGA(H ^ 2d \ epsilon ^ { - 2})$剧集来获取$ \ epsilon $ -optimal政策。我们的上限与依赖于$ \ epsilon $的依赖性和$ d $ if $ h \ ge d $。
translated by 谷歌翻译
我们研究了用线性函数近似的加固学习中的违规评估(OPE)问题,旨在根据行为策略收集的脱机数据来估计目标策略的价值函数。我们建议纳入价值函数的方差信息以提高ope的样本效率。更具体地说,对于时间不均匀的epiSodic线性马尔可夫决策过程(MDP),我们提出了一种算法VA-OPE,它使用价值函数的估计方差重新重量拟合Q迭代中的Bellman残差。我们表明我们的算法达到了比最着名的结果绑定的更紧密的误差。我们还提供了行为政策与目标政策之间的分布转移的细粒度。广泛的数值实验证实了我们的理论。
translated by 谷歌翻译
我们在非静止线性(AKA低级别)马尔可夫决策过程(MDP)中研究了集中加强学习,即奖励和转换内核都是关于给定特征映射的线性,并且被允许缓慢或突然演变时间。对于此问题设置,我们提出了一种基于加权最小二乘值的乐观模型算法的Opt-WLSVI,其使用指数权重来平滑地忘记过去远远的数据。我们表明我们的算法在每次竞争最佳政策时,实现了由$ \ widetilde {\ mathcal {o}}的上部界限的遗憾(d ^ {5/4} h ^ 2 \ delta ^ {1 / 4} k ^ {3/4})$何地在$ d $是特征空间的尺寸,$ h $是规划地平线,$ k $是剧集的数量和$ \ delta $是一个合适的衡量标准MDP的非固定性。此外,我们指出了在忘记以前作品的非静止线性匪徒环境中忘记策略的技术差距,并提出了修复其遗憾分析。
translated by 谷歌翻译
尽管无奖励强化学习勘探阶段的主要目标(RF-RL)是减少具有最小轨迹数量的估计模型中的不确定性时间。目前尚不清楚这种安全的探索要求如何影响相应的样本复杂性,以实现所获得的计划中所需的最佳性。在这项工作中,我们首次尝试回答这个问题。特别是,我们考虑了事先知道安全基线政策的情况,并提出了一个统一的安全奖励探索(甜蜜)框架。然后,我们将甜蜜框架专门为表格和低级MDP设置,并分别开发出算法所构成的表格甜味和低级别甜味。两种算法都利用了新引入的截短值函数的凹度和连续性,并保证在探索过程中以高概率侵犯了零约束。此外,两种算法都可以在计划阶段的任何约束中找到近乎最佳的政策。值得注意的是,算法下的样本复杂性在无限制的对应物中匹配甚至超过最恒定因素的最新情况,这证明安全约束几乎不会增加RF-RL的样本复杂性。
translated by 谷歌翻译
我们研究依靠敏感数据(例如医疗记录)的环境的顺序决策中,研究隐私的探索。特别是,我们专注于解决在线性MDP设置中受(联合)差异隐私的约束的增强学习问题(RL),在该设置中,动态和奖励均由线性函数给出。由于Luyo等人而引起的此问题的事先工作。 (2021)实现了$ o(k^{3/5})$的依赖性的遗憾率。我们提供了一种私人算法,其遗憾率提高,最佳依赖性为$ o(\ sqrt {k})$对情节数量。我们强烈遗憾保证的关键配方是策略更新时间表中的适应性,其中仅在检测到数据足够更改时才发生更新。结果,我们的算法受益于低切换成本,并且仅执行$ o(\ log(k))$更新,这大大降低了隐私噪声的量。最后,在最普遍的隐私制度中,隐私参数$ \ epsilon $是一个常数,我们的算法会造成可忽略不计的隐私成本 - 与现有的非私人遗憾界限相比,由于隐私而引起的额外遗憾在低阶中出现了术语。
translated by 谷歌翻译
无奖励强化学习(RL)考虑了代理在探索过程中无法访问奖励功能的设置,但必须提出仅在探索后才揭示的任意奖励功能的近乎最佳的政策。在表格环境中,众所周知,这是一个比奖励意识(PAC)RL(代理在探索过程中访问奖励功能)更困难的问题$ | \ Mathcal {s} | $,状态空间的大小。我们表明,在线性MDP的设置中,这种分离不存在。我们首先在$ d $二维线性MDP中开发了一种计算高效算法,其样品复杂度比例为$ \ widetilde {\ Mathcal {o}}(d^2 H^5/\ epsilon^2)$ 。然后,我们显示出$ \ omega(d^2 h^2/\ epsilon^2)$的匹配尺寸依赖性的下限,该限制为奖励感知的RL设置。据我们所知,我们的方法是第一个在线性MDP中实现最佳$ d $依赖性的计算有效算法,即使在单次奖励PAC设置中也是如此。我们的算法取决于一种新的程序,该过程有效地穿越了线性MDP,在任何给定的``特征方向''中收集样品,并在最大状态访问概率(线性MDP等效)中享受最佳缩放样品复杂性。我们表明,该探索过程也可以应用于解决线性MDP中````良好条件''''协变量的问题。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译
与表征解决马尔可夫决策过程(MDP)样品复杂性的进步相反,解决约束MDP(CMDP)的最佳统计复杂性仍然未知。我们通过在折扣CMDP中学习近乎最佳策略的样本复杂性上的最小上限和下限来解决这个问题,并访问生成模型(模拟器)。特别是,我们设计了一种基于模型的算法,该算法解决了两个设置:(i)允许违反小小的约束的可行性,以及(ii)严格的可行性,其中需要输出策略来满足约束。对于(i),我们证明我们的算法通过制作$ \ tilde {o} \ left(\ frac {s a \ log(1/\ delta)来返回带有概率$ 1- \ delta $的$ \ epsilon $ - 优势策略} {(1- \ gamma)^3 \ epsilon^2} \ right)$ QUERIES $ QUERIES与生成模型相匹配,因此与无约束的MDP的样品复杂性匹配。对于(ii),我们表明该算法的样本复杂性是由$ \ tilde {o} \ left(\ frac {s a a \ log,\ log(1/\ delta)} {(1 - \ gamma)^5 \,\ epsilon^2 \ zeta^2} \ right)$,其中$ \ zeta $是与问题相关的slater常数,其特征是可行区域的大小。最后,我们证明了严格的可行性设置的匹配较低限制,因此获得了折扣CMDP的第一个最小值最佳界限。我们的结果表明,在允许违反小小的约束时,学习CMDP与MDP一样容易,但是当我们要求零约束违规时,本质上更加困难。
translated by 谷歌翻译
我们考虑了学习eoiSodic安全控制政策的问题,这最小化了客观函数,同时满足必要的安全约束 - 都在学习和部署期间。我们使用具有未知转换概率函数的有限范围限制的Markov决策过程(CMDP)的有限范围限制的Markov决策过程(CMDP)制定了这种安全约束的强化学习(RL)问题。在这里,我们将安全要求造型为关于在所有学习集中必须满足的预期累计成本的限制。我们提出了一种基于模型的安全RL算法,我们称之为乐观 - 悲观的安全强化学习(OPSRL)算法,并表明它实现了$ \ TINDE {\ MATHCAL {O}}(S ^ {2} \ SQRT {啊^ {7} k} /(\ bar {c} - \ bar {c} _ {b}))$累积遗憾在学习期间没有违反安全限制,其中$ S $是州的数量,$ a $动作数量,$ H $是地平线长度,$ k $是学习剧集的数量,$(\ bar {c} - \ bar {c} _ {b})$是安全差距,即,约束值与已知安全基线政策的成本之间的差异。缩放为$ \ tilde {\ mathcal {o}}(\ sqrt {k})$与学习期间可能违反约束的传统方法相同,这意味着我们的算法尽管提供了一个额外的遗憾安全保证。我们的主要思想是利用乐观的探索方法,以悲观的约束实施来学习政策。这种方法同时激励了未知国家的探索,同时对访问可能违反安全限制的国家施加罚款。我们通过对传统方法的基准问题进行评估来验证我们的算法。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
我们研究了线性函数近似的强化学习(RL)。此问题的现有算法仅具有高概率遗憾和/或可能大致正确(PAC)样本复杂性保证,这不能保证对最佳政策的趋同。在本文中,为了克服现有算法的限制,我们提出了一种新的算法,称为长笛,它享有统一-PAC收敛到具有高概率的最佳政策。统一-PAC保证是文献中强化学习的最强烈保证,它可以直接意味着PAC和高概率遗憾,使我们的算法优于具有线性函数近似的所有现有算法。在我们的算法的核心,是一种新颖的最小值函数估计器和多级别分区方案,以从历史观察中选择训练样本。这两种技术都是新的和独立的兴趣。
translated by 谷歌翻译