Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers. Stochastic noise causes aleatoric uncertainty, whereas imprecise knowledge of model parameters leads to epistemic uncertainty. Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability. However, the underlying models exclusively capture aleatoric but not epistemic uncertainty, and thus require that model parameters are known precisely. Our contribution to overcoming this restriction is a novel abstraction-based controller synthesis method for continuous-state models with stochastic noise and uncertain parameters. By sampling techniques and robust analysis, we capture both aleatoric and epistemic uncertainty, with a user-specified confidence level, in the transition probability intervals of a so-called interval Markov decision process (iMDP). We synthesize an optimal policy on this iMDP, which translates (with the specified confidence level) to a feedback controller for the continuous model with the same performance guarantees. Our experimental benchmarks confirm that accounting for epistemic uncertainty leads to controllers that are more robust against variations in parameter values.
translated by 谷歌翻译
在安全关键设置中运行的自治系统的控制器必须考虑随机扰动。这种干扰通常被建模为过程噪声,并且常见的假设是底层分布是已知的和/或高斯的。然而,在实践中,这些假设可能是不现实的并且可以导致真正噪声分布的近似值。我们提出了一种新的规划方法,不依赖于噪声分布的任何明确表示。特别是,我们解决了计算控制器的控制器,该控制器提供了安全地到达目标的概率保证。首先,我们将连续系统摘要进入一个离散状态模型,通过状态之间的概率转换捕获噪声。作为关键贡献,我们根据噪声的有限数量的样本来调整这些过渡概率的方案方法中的工具。我们在所谓的间隔马尔可夫决策过程(IMDP)的转换概率间隔中捕获这些界限。该IMDP在过渡概率中的不确定性稳健,并且可以通过样本的数量来控制概率间隔的紧张性。我们使用最先进的验证技术在IMDP上提供保证,并计算这些保证对自主系统的控制器。即使IMDP有数百万个州或过渡,也表明了我们方法的实际适用性。
translated by 谷歌翻译
Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deploying these systems in safety-critical scenarios. However, their hybrid features and stochastic or unknown behaviours make this synthesis problem challenging. In this paper, we propose a method for synthesizing controllers for Markov jump linear systems (MJLSs), a particular class of cyber-physical systems, that certifiably satisfy a requirement expressed as a specification in probabilistic computation tree logic (PCTL). An MJLS consists of a finite set of linear dynamics with unknown additive disturbances, where jumps between these modes are governed by a Markov decision process (MDP). We consider both the case where the transition function of this MDP is given by probability intervals or where it is completely unknown. Our approach is based on generating a finite-state abstraction which captures both the discrete and the continuous behaviour of the original system. We formalise such abstraction as an interval Markov decision process (iMDP): intervals of transition probabilities are computed using sampling techniques from the so-called "scenario approach", resulting in a probabilistically sound approximation of the MJLS. This iMDP abstracts both the jump dynamics between modes, as well as the continuous dynamics within the modes. To demonstrate the efficacy of our technique, we apply our method to multiple realistic benchmark problems, in particular, temperature control, and aerial vehicle delivery problems.
translated by 谷歌翻译
我们研究了由测量和过程噪声引起的不确定性的动态系统的规划问题。测量噪声导致系统状态可观察性有限,并且过程噪声在给定控制的结果中导致不确定性。问题是找到一个控制器,保证系统在有限时间内达到所需的目标状态,同时避免障碍物,至少需要一些所需的概率。由于噪音,此问题不承认一般的精确算法或闭合性解决方案。我们的主要贡献是一种新颖的规划方案,采用卡尔曼滤波作为状态估计器,以获得动态系统的有限状态抽象,我们将作为马尔可夫决策过程(MDP)正式化。通过延长概率间隔的MDP,我们可以增强模型对近似过渡概率的数值不精确的鲁棒性。对于这种所谓的间隔MDP(IMDP),我们采用最先进的验证技术来有效地计算最大化目标状态概率的计划。我们展示了抽象的正确性,并提供了几种优化,旨在平衡计划的质量和方法的可扩展性。我们展示我们的方法能够处理具有6维状态的系统,该系统导致具有数万个状态和数百万个过渡的IMDP。
translated by 谷歌翻译
在安全关键方案中利用自主系统需要在存在影响系统动态的不确定性和黑匣子组件存在下验证其行为。在本文中,我们开发了一个框架,用于验证部分可观察到的离散时间动态系统,从给定的输入输出数据集中具有针对时间逻辑规范的未暗模式可分散的动态系统。验证框架采用高斯进程(GP)回归,以了解数据集中的未知动态,并将连续空间系统抽象为有限状态,不确定的马尔可夫决策过程(MDP)。这种抽象依赖于通过使用可重复的内核Hilbert空间分析以及通过离散化引起的不确定性来捕获由于GP回归中的错误而捕获不确定性的过渡概率间隔。该框架利用现有的模型检查工具来验证对给定时间逻辑规范的不确定MDP抽象。我们建立将验证结果扩展到潜在部分可观察系统的抽象结果的正确性。我们表明框架的计算复杂性在数据集和离散抽象的大小中是多项式。复杂性分析说明了验证结果质量与处理较大数据集和更精细抽象的计算负担之间的权衡。最后,我们展示了我们的学习和验证框架在具有线性,非线性和切换动力系统的几种案例研究中的功效。
translated by 谷歌翻译
We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold $p\in[0,1]$ over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on $3$ stochastic non-linear reinforcement learning tasks.
translated by 谷歌翻译
马尔可夫决策过程(MDP)是在顺序决策中常用的正式模型。 MDP捕获了可能出现的随机性,例如,通过过渡函数中的概率从不精确的执行器中捕获。但是,在数据驱动的应用程序中,从(有限)数据中得出精确的概率引入了可能导致意外或不良结果的统计错误。不确定的MDP(UMDP)不需要精确的概率,而是在过渡中使用所谓的不确定性集,占此类有限的数据。正式验证社区中的工具有效地计算了强大的政策,这些政策在不确定性集中最坏的情况下,可以证明遵守正式规格,例如安全限制。我们不断地以强大的学习方法与将专用的贝叶斯推理方案与强大策略的计算结合在一起的任何时间学习方法中不断学习MDP的过渡概率。特别是,我们的方法(1)将概率近似为间隔,(2)适应可能与中间模型不一致的新数据,并且可以随时停止(3),以在UMDP上计算强大的策略,以忠实地捕获稳健的策略到目前为止的数据。我们展示了我们的方法的有效性,并将其与在几个基准的实验评估中对UMDP计算出的UMDP进行了比较。
translated by 谷歌翻译
在线强化学习(RL)中的挑战之一是代理人需要促进对环境的探索和对样品的利用来优化其行为。无论我们是否优化遗憾,采样复杂性,状态空间覆盖范围或模型估计,我们都需要攻击不同的勘探开发权衡。在本文中,我们建议在分离方法组成的探索 - 剥削问题:1)“客观特定”算法(自适应)规定哪些样本以收集到哪些状态,似乎它可以访问a生成模型(即环境的模拟器); 2)负责尽可能快地生成规定样品的“客观无关的”样品收集勘探策略。建立最近在随机最短路径问题中进行探索的方法,我们首先提供一种算法,它给出了每个状态动作对所需的样本$ B(S,a)$的样本数量,需要$ \ tilde {o} (bd + d ^ {3/2} s ^ 2 a)收集$ b = \ sum_ {s,a} b(s,a)$所需样本的$时间步骤,以$ s $各国,$ a $行动和直径$ d $。然后我们展示了这种通用探索算法如何与“客观特定的”策略配对,这些策略规定了解决各种设置的样本要求 - 例如,模型估计,稀疏奖励发现,无需无成本勘探沟通MDP - 我们获得改进或新颖的样本复杂性保证。
translated by 谷歌翻译
在钢筋学习(RL)中,代理必须探索最初未知的环境,以便学习期望的行为。当RL代理部署在现实世界环境中时,安全性是主要关注的。受约束的马尔可夫决策过程(CMDPS)可以提供长期的安全约束;但是,该代理人可能会违反探索其环境的制约因素。本文提出了一种称为显式探索,漏洞探索或转义($ e ^ {4} $)的基于模型的RL算法,它将显式探索或利用($ e ^ {3} $)算法扩展到强大的CMDP设置。 $ e ^ 4 $明确地分离开发,探索和逃脱CMDP,允许针对已知状态的政策改进的有针对性的政策,发现未知状态,以及安全返回到已知状态。 $ e ^ 4 $强制优化了从一组CMDP模型的最坏情况CMDP上的这些策略,该模型符合部署环境的经验观察。理论结果表明,在整个学习过程中满足安全限制的情况下,在多项式时间中找到近最优的约束政策。我们讨论了稳健约束的离线优化算法,以及如何基于经验推理和先验知识来结合未知状态过渡动态的不确定性。
translated by 谷歌翻译
神经网络(NNS)已成功地用于代表复杂动力学系统的状态演变。这样的模型,称为NN动态模型(NNDMS),使用NN的迭代噪声预测来估计随时间推移系统轨迹的分布。尽管它们的准确性,但对NNDMS的安全分析仍然是一个具有挑战性的问题,并且在很大程度上尚未探索。为了解决这个问题,在本文中,我们介绍了一种为NNDM提供安全保证的方法。我们的方法基于随机屏障函数,其与安全性的关系类似于Lyapunov功能的稳定性。我们首先展示了通过凸优化问题合成NNDMS随机屏障函数的方法,该问题又为系统的安全概率提供了下限。我们方法中的一个关键步骤是,NNS的最新凸近似结果的利用是找到零件线性边界,这允许将屏障函数合成问题作为一个方形优化程序的制定。如果获得的安全概率高于所需的阈值,则该系统将获得认证。否则,我们引入了一种生成控制系统的方法,该系统以最小的侵入性方式稳健地最大化安全概率。我们利用屏障函数的凸属性来提出最佳控制合成问题作为线性程序。实验结果说明了该方法的功效。即,他们表明该方法可以扩展到具有多层和数百个神经元的多维NNDM,并且控制器可以显着提高安全性概率。
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
强化学习(RL)和连续的非线性控制已成功部署在复杂的顺序决策任务的多个领域中。但是,鉴于学习过程的探索性质和模型不确定性的存在,由于缺乏安全保证,将它们应用于安全至关重要的控制任务是一项挑战。另一方面,尽管将控制理论方法与学习算法相结合,但在安全RL应用中显示了希望,但安全数据收集过程的样本效率尚未得到很好的解决。在本文中,我们提出了一个\ emph {可证明的}示例有效的情节安全学习框架,用于在线控制任务,以利用未知的非线性动力学系统来利用安全的探索和剥削。特别是,框架1)在随机设置中扩展控制屏障功能(CBF),以在模型学习过程中实现可证明的高概率安全性,2)整合基于乐观的探索策略,以有效地将安全探索过程与学习的动态有效地指导安全探索过程对于\ emph {接近最佳}控制性能。我们对与理论保证的最佳控制器和概率安全性的偶发性遗憾进行了正式分析。提供了仿真结果以证明所提出算法的有效性和效率。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
Reinforcement learning is a powerful paradigm for learning optimal policies from experimental data. However, to find optimal policies, most reinforcement learning algorithms explore all possible actions, which may be harmful for real-world systems. As a consequence, learning algorithms are rarely applied on safety-critical systems in the real world. In this paper, we present a learning algorithm that explicitly considers safety, defined in terms of stability guarantees. Specifically, we extend control-theoretic results on Lyapunov stability verification and show how to use statistical models of the dynamics to obtain high-performance control policies with provable stability certificates. Moreover, under additional regularity assumptions in terms of a Gaussian process prior, we prove that one can effectively and safely collect data in order to learn about the dynamics and thus both improve control performance and expand the safe region of the state space. In our experiments, we show how the resulting algorithm can safely optimize a neural network policy on a simulated inverted pendulum, without the pendulum ever falling down.
translated by 谷歌翻译
我们考虑在离散时间非线性随机控制系统中正式验证几乎核实(A.S.)渐近稳定性的问题。在文献中广泛研究确定性控制系统中的验证稳定性,验证随机控制系统中的验证稳定性是一个开放的问题。本主题的少数现有的作品只考虑专门的瞬间形式,或对系统进行限制性假设,使其无法与神经网络策略的学习算法不适用。在这项工作中,我们提出了一种具有两种新颖方面的一般非线性随机控制问题的方法:(a)Lyapunov函数的经典随机扩展,我们使用排名超大地区(RSMS)来证明〜渐近稳定性,以及(B)我们提出一种学习神经网络RSM的方法。我们证明我们的方法保证了系统的渐近稳定性,并提供了第一种方法来获得稳定时间的界限,其中随机Lyapunov功能不。最后,我们在通过神经网络政策的一套非线性随机强化学习环境上通过实验验证我们的方法。
translated by 谷歌翻译
在这项工作中,我们分析了一种高效的采样算法,用于通用可达性分析,这仍然是一种令人难度的挑战性问题,其应用范围从神经网络验证到动态系统的安全分析。通过采样输入,评估其在真正可到达的集合中的图像,并将其$ \ epsilon $ -padded凸壳作为集合估计器,该算法适用于一般问题设置,易于实现。我们主要贡献是使用随机集理论的渐近和有限样本精度保证的推导。该分析通知算法设计以获得$ \ epsilon $-close达到的近似值,具有很高的概率,提供了可达性问题最具挑战性的洞察力,并激励了该技术的安全关键应用。在神经网络验证任务上,我们表明这种方法比现有工作更准确,明显更快。我们的分析知情,我们还设计了一种强大的模型预测控制器,我们在硬件实验中展示。
translated by 谷歌翻译
我们使用线性时间逻辑(LTL)约束研究策略优化问题(PO)。LTL的语言允许灵活描述可能不自然的任务,以编码为标量成本函数。我们将LTL受限的PO视为系统框架,将任务规范与策略选择解耦,以及成本塑造标准的替代方案。通过访问生成模型,我们开发了一种基于模型的方法,该方法享有样本复杂性分析,以确保任务满意度和成本最佳性(通过减少到可达性问题)。从经验上讲,即使在低样本制度中,我们的算法也可以实现强大的性能。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译