Nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose a primal dual alternating proximal gradient (PDAPG) algorithm and a primal dual proximal gradient (PDPG-L) algorithm for solving nonsmooth nonconvex-strongly concave and nonconvex-linear minimax problems with coupled linear constraints, respectively. The corresponding iteration complexity of the two algorithms are proved to be $\mathcal{O}\left( \varepsilon ^{-2} \right)$ and $\mathcal{O}\left( \varepsilon ^{-3} \right)$ to reach an $\varepsilon$-stationary point, respectively. To our knowledge, they are the first two algorithms with iteration complexity guarantee for solving the two classes of minimax problems.
translated by 谷歌翻译
最近,由于这些问题与一些新兴应用的相关性,最近有许多研究工作用于开发有效算法,以解决理论收敛的保证。在本文中,我们提出了一种统一的单环交替梯度投影(AGP)算法,用于求解平滑的非convex-(强烈)凹面和(强烈)凸出 - 非concave minimax问题。 AGP采用简单的梯度投影步骤来更新每次迭代时的原始变量和双变量。我们表明,它可以在$ \ MATHCAL {O} \ left(\ Varepsilon ^{ - 2} \ right)$(rep. $ \ Mathcal {O} \ left)中找到目标函数的$ \ VAREPSILON $ -STAIMATARY点。 (\ varepsilon ^{ - 4} \ right)$)$迭代,在nonconvex-strongly凹面(resp。nonconvex-concave)设置下。此外,获得目标函数的$ \ VAREPSILON $ -STAIMATARY的梯度复杂性由$ \ Mathcal {o} \ left(\ varepsilon ^{ - 2} \ right)界限O} \ left(\ varepsilon ^{ - 4} \ right)$在强烈的convex-nonconcave(resp。,convex-nonconcave)设置下。据我们所知,这是第一次开发出一种简单而统一的单环算法来解决非convex-(强烈)凹面和(强烈)凸出 - 非concave minimax问题。此外,在文献中从未获得过解决后者(强烈)凸线 - 非孔孔的最小问题的复杂性结果。数值结果表明所提出的AGP算法的效率。此外,我们通过提出块交替近端梯度(BAPG)算法来扩展AGP算法,以求解更通用的多块非块非conmooth nonmooth nonmooth noncovex-(强)凹面和(强烈)convex-nonconcave minimax问题。我们可以在这四个不同的设置下类似地建立所提出算法的梯度复杂性。
translated by 谷歌翻译
梯度下降上升(GDA),最简单的单环路算法用于非凸起最小化优化,广泛用于实际应用,例如生成的对抗网络(GANS)和对抗性训练。尽管其理想的简单性,最近的工作表明了理论上的GDA的较差收敛率,即使在一侧对象的强凹面也是如此。本文为两个替代的单环算法建立了新的收敛结果 - 交替GDA和平滑GDA - 在温和的假设下,目标对一个变量的polyak-lojasiewicz(pl)条件满足Polyak-lojasiewicz(pl)条件。我们证明,找到一个$ \ epsilon $ -stationary点,(i)交替的GDA及其随机变体(没有迷你批量),分别需要$ o(\ kappa ^ {2} \ epsilon ^ { - 2})$和$ o(\ kappa ^ {4} \ epsilon ^ {-4})$迭代,而(ii)平滑gda及其随机变体(没有迷你批次)分别需要$ o(\ kappa \ epsilon ^ { - 2}) $和$ o(\ kappa ^ {2} \ epsilon ^ { - 4})$迭代。后者大大改善了Vanilla GDA,并在类似的环境下给出了单环算法之间的最佳已知复杂性结果。我们进一步展示了这些算法在训练GAN和强大的非线性回归中的经验效率。
translated by 谷歌翻译
NonConvex-Concave Minimax优化已经对机器学习产生了浓厚的兴趣,包括对数据分配具有稳健性,以非解释性损失,对抗性学习为单一的学习。然而,大多数现有的作品都集中在梯度散发性(GDA)变体上,这些变体只能在平滑的设置中应用。在本文中,我们考虑了一个最小问题的家族,其目标功能在最小化变量中享有非平滑复合结构,并且在最大化的变量中是凹入的。通过充分利用复合结构,我们提出了平滑的近端线性下降上升(\ textit {平滑} plda)算法,并进一步建立了其$ \ Mathcal {o}(\ epsilon^{ - 4})在平滑设置下,平滑的gda〜 \ cite {zhang2020single}。此外,在一个温和的假设下,目标函数满足单方面的kurdyka- \ l {} ojasiewicz条件,带有指数$ \ theta \ in(0,1)$,我们可以进一步将迭代复杂性提高到$ \ MATHCAL {O }(\ epsilon^{ - 2 \ max \ {2 \ theta,1 \}})$。据我们所知,这是第一种非平滑nonconvex-concave问题的可证明有效的算法,它可以实现最佳迭代复杂性$ \ MATHCAL {o}(\ epsilon^{ - 2})$,如果$ \ theta \ 0,1/2] $。作为副产品,我们讨论了不同的平稳性概念并定量澄清它们的关系,这可能具有独立的兴趣。从经验上,我们说明了拟议的平滑PLDA在变体正规化WassErstein分布在鲁棒优化问题上的有效性。
translated by 谷歌翻译
Nonconvex-nonconcave minimax optimization has been the focus of intense research over the last decade due to its broad applications in machine learning and operation research. Unfortunately, most existing algorithms cannot be guaranteed to converge and always suffer from limit cycles. Their global convergence relies on certain conditions that are difficult to check, including but not limited to the global Polyak-\L{}ojasiewicz condition, the existence of a solution satisfying the weak Minty variational inequality and $\alpha$-interaction dominant condition. In this paper, we develop the first provably convergent algorithm called doubly smoothed gradient descent ascent method, which gets rid of the limit cycle without requiring any additional conditions. We further show that the algorithm has an iteration complexity of $\mathcal{O}(\epsilon^{-4})$ for finding a game stationary point, which matches the best iteration complexity of single-loop algorithms under nonconcave-concave settings. The algorithm presented here opens up a new path for designing provable algorithms for nonconvex-nonconcave minimax optimization problems.
translated by 谷歌翻译
本文重点介绍了解决光滑非凸强凹入最小问题的随机方法,这导致了由于其深度学习中的潜在应用而受到越来越长的关注(例如,深度AUC最大化,分布鲁棒优化)。然而,大多数现有算法在实践中都很慢,并且它们的分析围绕到几乎静止点的收敛。我们考虑利用Polyak-\ L Ojasiewicz(PL)条件来设计更快的随机算法,具有更强的收敛保证。尽管已经用于设计许多随机最小化算法的PL条件,但它们对非凸敏最大优化的应用仍然罕见。在本文中,我们提出并分析了基于近端的跨越时代的方法的通用框架,许多众所周知的随机更新嵌入。以{\ BF原始物镜差和二元间隙}的方式建立快速收敛。与现有研究相比,(i)我们的分析基于一个新的Lyapunov函数,包括原始物理差距和正则化功能的二元间隙,(ii)结果更加全面,提高了更好的依赖性的速率不同假设下的条件号。我们还开展深层和非深度学习实验,以验证我们的方法的有效性。
translated by 谷歌翻译
非convex受限的优化问题可用于模拟许多机器学习问题,例如多级Neyman-Pearson分类和受限的Markov决策过程。但是,由于目标和约束可能是非概念,因此这些问题都是具有挑战性的,因此很难平衡减少损失价值和减少约束违规行为的平衡。尽管有几种方法可以解决此类问题,但它们都是双环或三环算法,它们需要Oracles来解决某些子问题,通过在每次迭代中调整多个超级参数,以达到某些准确性。在本文中,我们提出了一种新型的梯度下降和扰动的上升(GDPA)算法,以解决一类平滑的非概念不平等的限制问题。 GDPA是一种原始的偶算法,仅利用目标和约束函数的一阶信息,以交替的方式更新原始变量和双重变量。该算法的关键特征是它是一种单循环算法,其中只需要调整两个步骤尺寸。我们表明,在轻度的规律性条件下,GDPA能够找到非convex功能约束问题的Karush-Kuhn-Tucker(KKT)点,并保证了收敛率。据我们所知,这是第一个可以通过非convex不等式约束来解决一般非凸的平滑问题的单循环算法。与最著名的算法相比,数值结果还显示了GDPA的优越性(就平稳性测量和获得的溶液的可行性而言)。
translated by 谷歌翻译
在许多机器学习应用程序中出现了非convex-concave min-max问题,包括最大程度地减少一组非凸函数的最大程度,并对神经网络的强大对抗训练。解决此问题的一种流行方法是梯度下降(GDA)算法,不幸的是,在非凸性的情况下可以表现出振荡。在本文中,我们引入了一种“平滑”方案,该方案可以与GDA结合以稳定振荡并确保收敛到固定溶液。我们证明,稳定的GDA算法可以实现$ O(1/\ epsilon^2)$迭代复杂性,以最大程度地减少有限的非convex函数收集的最大值。此外,平滑的GDA算法达到了$ O(1/\ epsilon^4)$ toseration复杂性,用于一般的nonconvex-concave问题。提出了这种稳定的GDA算法的扩展到多块情况。据我们所知,这是第一个实现$ o(1/\ epsilon^2)$的算法,用于一类NonConvex-Concave问题。我们说明了稳定的GDA算法在健壮训练中的实际效率。
translated by 谷歌翻译
我们考虑非凸凹minimax问题,$ \ min _ {\ mathbf {x}} \ mathcal {y}} f(\ mathbf {x},\ mathbf {y})$, $ f $在$ \ mathbf {x} $ on $ \ mathbf {y} $和$ \ mathcal {y} $中的$ \ \ mathbf {y} $。解决此问题的最受欢迎的算法之一是庆祝的梯度下降上升(GDA)算法,已广泛用于机器学习,控制理论和经济学。尽管凸凹设置的广泛收敛结果,但具有相等步骤的GDA可以收敛以限制循环甚至在一般设置中发散。在本文中,我们介绍了两次尺度GDA的复杂性结果,以解决非膨胀凹入的最小问题,表明该算法可以找到函数$ \ phi(\ cdot)的静止点:= \ max _ {\ mathbf {Y} \ In \ Mathcal {Y}} F(\ CDOT,\ MATHBF {Y})高效。据我们所知,这是对这一环境中的两次尺度GDA的第一个非因对药分析,阐明了其在培训生成对抗网络(GANS)和其他实际应用中的优越实际表现。
translated by 谷歌翻译
Minimax优化已成为许多机器学习(ML)问题的骨干。尽管优化算法的收敛行为已在minimax设置中进行了广泛的研究,但它们在随机环境中的概括保证,即对经验数据训练的解决方案如何在看不见的测试数据上执行,但相对却相对均未被倍增。一个基本问题仍然难以捉摸:研究最小学习者的概括是什么?在本文中,我们的目标是首先证明原始风险是研究最小化中的普遍性的普遍指标,在简单的最小问题示例中失败了。此外,由于鞍点不存在,另一个流行的指标,即原始的双重风险,也无法表征非凸度问题的最小值问题的概括行为。因此,我们提出了一个新的指标,以研究最小学习者的概括:原始差距,以规避这些问题。接下来,我们在非convex-concave设置中得出原始差距的概括范围。作为我们分析的副产品,我们还解决了两个空旷的问题:在强大意义上,建立原始风险和原始偶发风险的概括范围,即没有强大的凹面或假设最大化和期望可以互换,而这些假设中的任何一个都可以互换在文献中需要。最后,我们利用这一新指标比较了两种流行算法的概括行为 - 梯度下降(GDA)和梯度下降 - 最大趋势 - 最小值优化。
translated by 谷歌翻译
Convex function constrained optimization has received growing research interests lately. For a special convex problem which has strongly convex function constraints, we develop a new accelerated primal-dual first-order method that obtains an $\Ocal(1/\sqrt{\vep})$ complexity bound, improving the $\Ocal(1/{\vep})$ result for the state-of-the-art first-order methods. The key ingredient to our development is some novel techniques to progressively estimate the strong convexity of the Lagrangian function, which enables adaptive step-size selection and faster convergence performance. In addition, we show that the complexity is further improvable in terms of the dependence on some problem parameter, via a restart scheme that calls the accelerated method repeatedly. As an application, we consider sparsity-inducing constrained optimization which has a separable convex objective and a strongly convex loss constraint. In addition to achieving fast convergence, we show that the restarted method can effectively identify the sparsity pattern (active-set) of the optimal solution in finite steps. To the best of our knowledge, this is the first active-set identification result for sparsity-inducing constrained optimization.
translated by 谷歌翻译
二重优化发现在现代机器学习问题中发现了广泛的应用,例如超参数优化,神经体系结构搜索,元学习等。而具有独特的内部最小点(例如,内部功能是强烈凸的,都具有唯一的内在最小点)的理解,这是充分理解的,多个内部最小点的问题仍然是具有挑战性和开放的。为此问题设计的现有算法适用于限制情况,并且不能完全保证融合。在本文中,我们采用了双重优化的重新制定来限制优化,并通过原始的双二线优化(PDBO)算法解决了问题。 PDBO不仅解决了多个内部最小挑战,而且还具有完全一阶效率的情况,而无需涉及二阶Hessian和Jacobian计算,而不是大多数现有的基于梯度的二杆算法。我们进一步表征了PDBO的收敛速率,它是与多个内部最小值的双光线优化的第一个已知的非质合收敛保证。我们的实验证明了所提出的方法的预期性能。
translated by 谷歌翻译
Difference-of-Convex (DC) minimization, referring to the problem of minimizing the difference of two convex functions, has been found rich applications in statistical learning and studied extensively for decades. However, existing methods are primarily based on multi-stage convex relaxation, only leading to weak optimality of critical points. This paper proposes a coordinate descent method for minimizing a class of DC functions based on sequential nonconvex approximation. Our approach iteratively solves a nonconvex one-dimensional subproblem globally, and it is guaranteed to converge to a coordinate-wise stationary point. We prove that this new optimality condition is always stronger than the standard critical point condition and directional point condition under a mild \textit{locally bounded nonconvexity assumption}. For comparisons, we also include a naive variant of coordinate descent methods based on sequential convex approximation in our study. When the objective function satisfies a \textit{globally bounded nonconvexity assumption} and \textit{Luo-Tseng error bound assumption}, coordinate descent methods achieve \textit{Q-linear} convergence rate. Also, for many applications of interest, we show that the nonconvex one-dimensional subproblem can be computed exactly and efficiently using a breakpoint searching method. Finally, we have conducted extensive experiments on several statistical learning tasks to show the superiority of our approach. Keywords: Coordinate Descent, DC Minimization, DC Programming, Difference-of-Convex Programs, Nonconvex Optimization, Sparse Optimization, Binary Optimization.
translated by 谷歌翻译
在本文中,我们研究了一个凸凹马鞍点问题$ \ min_x \ max_y f(x)+ y ^ \ top \ mathbf {a} x - g(y)$,其中$ f(x)$和$ g(y)$是平滑和凸的功能。我们提出了一种加速的原始 - 双梯度方法,用于解决该问题(i)在匹配较低复杂性绑定的强 - 凸强 - 凹形方案中实现最佳线性收敛速率(Zhang等,2021)和(ii)在只有其中一个函数$ f(x)$和$ g(y)$的情况下实现加速的线性收敛速率,而甚至没有它们。最后,我们获得了一种线性收敛算法,用于一般平滑和凸凹骑马点问题$ \ min_x \ max_y f(x,y)$,不需要强大的凸起或强凹面。
translated by 谷歌翻译
我们考虑光滑的凸孔concave双线性耦合的鞍点问题,$ \ min _ {\ mathbf {x}}} \ max _ {\ mathbf {y Mathbf {y}} 〜f(\ mathbf {x}} },\ mathbf {y}) - g(\ mathbf {y})$,其中一个人可以访问$ f $,$ g $的随机一阶oracles以及biinear耦合函数$ h $。基于标准的随机外部分析,我们提出了随机\ emph {加速梯度 - extragradient(ag-eg)}下降的算法,该算法在一般随机设置中结合了外部和Nesterov的加速度。该算法利用计划重新启动以接收一种良好的非震动收敛速率,该算法与\ citet {ibrahim202020linear}和\ citet {zhang2021lower}相匹配,并在其相应的设置中,还有一个额外的统计误差期限,以及\ citet {zhang2021lower}最多达到恒定的预取子。这是在鞍点优化中实现这种相对成熟的最佳表征的第一个结果。
translated by 谷歌翻译
Robust Markov decision processes (RMDPs) are promising models that provide reliable policies under ambiguities in model parameters. As opposed to nominal Markov decision processes (MDPs), however, the state-of-the-art solution methods for RMDPs are limited to value-based methods, such as value iteration and policy iteration. This paper proposes Double-Loop Robust Policy Gradient (DRPG), the first generic policy gradient method for RMDPs with a global convergence guarantee in tabular problems. Unlike value-based methods, DRPG does not rely on dynamic programming techniques. In particular, the inner-loop robust policy evaluation problem is solved via projected gradient descent. Finally, our experimental results demonstrate the performance of our algorithm and verify our theoretical guarantees.
translated by 谷歌翻译
在这项工作中,我们旨在研究用于凸出的凸侧鞍点问题(SPP)的原始偶(PD)方法。在许多情况下,仅原始函数上近端甲骨文的计算效率低下。因此,我们在近端步骤中使用其一阶线性近似,从而导致线性化PD(LPD)方法。即使耦合项为双线性,我们也会观察到LPD对原始功能的Lipschitz常数具有次优的依赖性。相比之下,LPD对于强凸凹形病例具有最佳的收敛性。该观察结果导致我们提出了加速的线性化原始偶(ALPD)算法,以求解强烈的凸面spp。 ALPD是一种单环算法,结合了Nesterov加速梯度下降(AGD)和LPD的特征。我们表明,当耦合项为半线性(包含双线性作为特定情况)时,ALPD获得了对原始功能的Lipschitz常数的最佳依赖性。因此,它是一种最佳算法。当耦合项具有一般的非线性形式时,ALPD算法对耦合项原始部分的Lipschitz常数具有次优依赖性。为了提高这种依赖性,我们提出了一种不精确的APD算法。该算法在内部循环中执行AGD迭代,以找到对APD近端子问题的近似解决方案。我们表明,不精确的APD保持了问题的原始和双重部分的最佳梯度评​​估(梯度复杂性)。它还显着改善了原始耦合项的梯度复杂性。
translated by 谷歌翻译
随机梯度下降(SGDA)及其变体一直是解决最小值问题的主力。但是,与研究有差异隐私(DP)约束的经过良好研究的随机梯度下降(SGD)相反,在理解具有DP约束的SGDA的概括(实用程序)方面几乎没有工作。在本文中,我们使用算法稳定性方法在不同的设置中建立DP-SGDA的概括(实用程序)。特别是,对于凸 - 凸环设置,我们证明DP-SGDA可以在平滑和非平滑案例中都可以根据弱原始二元人群风险获得最佳的效用率。据我们所知,这是在非平滑案例中DP-SGDA的第一个已知结果。我们进一步在非convex-rong-concave环境中提供了实用性分析,这是原始人口风险的首个已知结果。即使在非私有设置中,此非convex设置的收敛和概括结果也是新的。最后,进行了数值实验,以证明DP-SGDA在凸和非凸病例中的有效性。
translated by 谷歌翻译
在论文中,我们提出了一类加速的零顺序,用于非凸迷你优化和最小值优化的一类加速的零序命令和一流的动量方法。具体而言,我们提出了一种新的加速零级动量(ACC-ZOM)方法,用于黑箱迷你优化。此外,我们证明我们的ACC-ZOM方法达到$ \ TILDE {O}的较低查询复杂性(D ^ {3/4} \ epsilon ^ {-3})$寻找$ \ epsilon $ -stationary point,这通过$ o(d ^ {1/4})$ of the $ d $表示可变尺寸。特别是,ACC-ZOM不需要现有的零点随机算法中所需的大批次。同时,我们提出了一种加速\ TextBF {Zeroth-Order} moneotum血管下降(ACC-ZOMDA)方法,用于\ TextBF {Black-Box} Minimax-Optimization,它获得$ \ TINDE {O}的查询复杂性((d_1 + d_2)^ {3/4} \ kappa_y ^ {4.5} \ epsilon ^ { - 3})$没有大批次查找$ \ epsilon $ -stationary point,其中$ d_1 $和$ d_2 $ demote变量尺寸和$ \ kappa_y $是条件号。此外,我们提出了一种加速\ TextBF {一阶}势头血管下降(ACC-MDA)方法,用于\ textBF {White-Box} Minimax优化,它具有$ \ tilde {o}(\ kappa_y ^ { 4.5} \ epsilon ^ { - 3})$无大批次查找$ \ epsilon $ -stationary point。特别是,我们的ACC-MDA可以获得$ \ tilde {o}(\ kappa_y ^ {2.5} \ epsilon ^ {-3})$的较低渐变复杂性,具有批量尺寸$ o(\ kappa_y ^ 4)$。对黑匣子对抗攻击深度神经网络(DNN)和中毒攻击的广泛实验结果表明了我们算法的效率。
translated by 谷歌翻译
交替的梯度 - 下降 - 上升(Altgda)是一种优化算法,已广泛用于各种机器学习应用中的模型培训,其旨在解决非渗透最小新的优化问题。然而,现有的研究表明,它遭受了非凸起最小值优化中的高计算复杂性。在本文中,我们开发了一种单环和快速Altgda型算法,利用了近端渐变更新和动量加速来解决正常的非透露极限优化问题。通过识别该算法的内在Lyapunov函数,我们证明它会收敛到非凸起最小化优化问题的临界点,并实现了计算复杂度$ \ mathcal {o}(\ kappa ^ {1.5} \ epsilon ^ { - 2} )$,其中$ \ epsilon $是理想的准确度,$ \ kappa $是问题的条件号。这种计算复杂性改善了单环GDA和AltGDA算法的最先进的复杂性(参见表1中的比较摘要)。我们通过对对抗深层学习的实验展示了算法的有效性。
translated by 谷歌翻译