随着边缘设备深度学习的普及日益普及,压缩大型神经网络以满足资源受限设备的硬件要求成为了重要的研究方向。目前正在使用许多压缩方法来降低神经网络的存储器尺寸和能量消耗。知识蒸馏(KD)是通过使用数据样本来将通过大型模型(教师)捕获的知识转移到较小的数据样本(学生)的方法和IT功能。但是,由于各种原因,在压缩阶段可能无法访问原始训练数据。因此,无数据模型压缩是各种作品所解决的正在进行的研究问题。在本文中,我们指出灾难性的遗忘是在现有的无数据蒸馏方法中可能被观察到的问题。此外,其中一些方法中的样本生成策略可能导致合成和实际数据分布之间的不匹配。为了防止此类问题,我们提出了一种无数据的KD框架,它随着时间的推移维护生成的样本的动态集合。此外,我们添加了匹配目标生成策略中的实际数据分布的约束,该策略为目标最大信息增益。我们的实验表明,与SVHN,时尚MNIST和CIFAR100数据集上的最先进方法相比,我们可以提高通过KD获得的学生模型的准确性。
translated by 谷歌翻译
无数据知识蒸馏(KD)允许从训练有素的神经网络(教师)到更紧凑的一个(学生)的知识转移在没有原始训练数据。现有的作品使用验证集来监视学生通过实际数据的准确性,并在整个过程中报告最高性能。但是,验证数据可能无法在蒸馏时间可用,使得记录实现峰值精度的学生快照即可。因此,实际的无数据KD方法应该是坚固的,理想情况下,在蒸馏过程中理想地提供单调增加的学生准确性。这是具有挑战性的,因为学生因合成数据的分布转移而经历了知识劣化。克服这个问题的直接方法是定期存储和排练生成的样本,这增加了内存占据措施并创造了隐私问题。我们建议用生成网络模拟先前观察到的合成样品的分布。特别地,我们设计了具有训练目标的变形式自动化器(VAE),其定制以最佳地学习合成数据表示。学生被生成的伪重播技术排练,其中样品由VAE产生。因此,可以防止知识劣化而不存储任何样本。在图像分类基准测试中的实验表明,我们的方法优化了蒸馏模型精度的预期值,同时消除了采样存储方法产生的大型内存开销。
translated by 谷歌翻译
知识蒸馏在模型压缩方面取得了显着的成就。但是,大多数现有方法需要原始的培训数据,而实践中的实际数据通常是不可用的,因为隐私,安全性和传输限制。为了解决这个问题,我们提出了一种有条件的生成数据无数据知识蒸馏(CGDD)框架,用于培训有效的便携式网络,而无需任何实际数据。在此框架中,除了使用教师模型中提取的知识外,我们将预设标签作为额外的辅助信息介绍以培训发电机。然后,训练有素的发生器可以根据需要产生指定类别的有意义的培训样本。为了促进蒸馏过程,除了使用常规蒸馏损失,我们将预设标签视为地面真理标签,以便学生网络直接由合成训练样本类别监督。此外,我们强制学生网络模仿教师模型的注意图,进一步提高了其性能。为了验证我们方法的优越性,我们设计一个新的评估度量称为相对准确性,可以直接比较不同蒸馏方法的有效性。培训的便携式网络通过提出的数据无数据蒸馏方法获得了99.63%,99.07%和99.84%的CIFAR10,CIFAR100和CALTECH101的相对准确性。实验结果表明了所提出的方法的优越性。
translated by 谷歌翻译
无数据知识蒸馏(DFKD)最近引起了人们的关注,这要归功于其在不使用培训数据的情况下将知识从教师网络转移到学生网络的吸引力。主要思想是使用发电机合成数据以培训学生。随着发电机的更新,合成数据的分布将发生变化。如果发电机和学生接受对手的训练,使学生忘记了先前一步获得的知识,则这种分配转换可能会很大。为了减轻这个问题,我们提出了一种简单而有效的方法,称为动量对抗蒸馏(MAD),该方法维持了发电机的指数移动平均值(EMA)副本,并使用发电机和EMA生成器的合成样品来培训学生。由于EMA发电机可以被视为发电机旧版本的合奏,并且与发电机相比,更新的更改通常会发生较小的变化,因此对其合成样本进行培训可以帮助学生回顾过去的知识,并防止学生适应太快的速度发电机的新更新。我们在六个基准数据集上进行的实验,包括ImageNet和Place365,表明MAD的性能优于竞争方法来处理大型分配转移问题。我们的方法还与现有的DFKD方法相比,甚至在某些情况下达到了最新的方法。
translated by 谷歌翻译
知识蒸馏(KD)是一种有效的方法,可以将知识从大型“教师”网络转移到较小的“学生”网络。传统的KD方法需要大量标记的培训样本和白盒老师(可以访问参数)才能培训好学生。但是,这些资源并不总是在现实世界应用中获得。蒸馏过程通常发生在我们无法访问大量数据的外部政党方面,并且由于安全性和隐私问题,教师没有披露其参数。为了克服这些挑战,我们提出了一种黑盒子少的KD方法,以培训学生很少的未标记培训样本和一个黑盒老师。我们的主要思想是通过使用混合和有条件的变异自动编码器生成一组不同的分布合成图像来扩展训练集。这些合成图像及其从老师获得的标签用于培训学生。我们进行了广泛的实验,以表明我们的方法在图像分类任务上明显优于最近的SOTA/零射击KD方法。代码和型号可在以下网址找到:https://github.com/nphdang/fs-bbt
translated by 谷歌翻译
随着AI芯片(例如GPU,TPU和NPU)的改进以及物联网(IOT)的快速发展,一些强大的深神经网络(DNN)通常由数百万甚至数亿个参数组成,这些参数是可能不适合直接部署在低计算和低容量单元(例如边缘设备)上。最近,知识蒸馏(KD)被认为是模型压缩的有效方法之一,以减少模型参数。 KD的主要概念是从大型模型(即教师模型)的特征图中提取有用的信息,以引用成功训练一个小型模型(即学生模型),该模型大小比老师小得多。尽管已经提出了许多基于KD的方法来利用教师模型中中间层的特征图中的信息,但是,它们中的大多数并未考虑教师模型和学生模型之间的特征图的相似性,这可能让学生模型学习无用的信息。受到注意机制的启发,我们提出了一种新颖的KD方法,称为代表教师钥匙(RTK),该方法不仅考虑了特征地图的相似性,而且还会过滤掉无用的信息以提高目标学生模型的性能。在实验中,我们使用多个骨干网络(例如Resnet和wideresnet)和数据集(例如CIFAR10,CIFAR100,SVHN和CINIC10)验证了我们提出的方法。结果表明,我们提出的RTK可以有效地提高基于注意的KD方法的分类精度。
translated by 谷歌翻译
无数据知识蒸馏(DFKD)的目的是在没有培训数据的情况下培训从教师网络的轻量级学生网络。现有方法主要遵循生成信息样本的范式,并通过针对数据先验,边界样本或内存样本来逐步更新学生模型。但是,以前的DFKD方法很难在不同的训练阶段动态调整生成策略,这反过来又很难实现高效且稳定的训练。在本文中,我们探讨了如何从课程学习(CL)的角度来教学学生,并提出一种新方法,即“ CUDFKD”,即“使用课程的无数据知识蒸馏”。它逐渐从简单的样本到困难的样本学习,这类似于人类学习的方式。此外,我们还提供了对主要化最小化(MM)算法的理论分析,并解释了CUDFKD的收敛性。在基准数据集上进行的实验表明,使用简单的课程设计策略,CUDFKD可以在最先进的DFKD方法和不同的基准测试中实现最佳性能,例如CIFAR10上RESNET18模型的95.28 \%TOP1的精度,这是更好的而不是从头开始培训数据。训练很快,在30个时期内达到90 \%的最高精度,并且训练期间的差异稳定。同样在本文中,还分析和讨论了CUDFKD的适用性。
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
在学习新知识时,班级学习学习(CIL)与灾难性遗忘和无数据CIL(DFCIL)的斗争更具挑战性,而无需访问以前学过的课程的培训数据。尽管最近的DFCIL作品介绍了诸如模型反转以合成以前类的数据,但由于合成数据和真实数据之间的严重域间隙,它们无法克服遗忘。为了解决这个问题,本文提出了有关DFCIL的关系引导的代表学习(RRL),称为R-DFCIL。在RRL中,我们引入了关系知识蒸馏,以灵活地将新数据的结构关系从旧模型转移到当前模型。我们的RRL增强DFCIL可以指导当前的模型来学习与以前类的表示更好地兼容的新课程的表示,从而大大减少了在改善可塑性的同时遗忘。为了避免表示和分类器学习之间的相互干扰,我们在RRL期间采用本地分类损失而不是全球分类损失。在RRL之后,分类头将通过全球类平衡的分类损失进行完善,以解决数据不平衡问题,并学习新课程和以前类之间的决策界限。关于CIFAR100,Tiny-Imagenet200和Imagenet100的广泛实验表明,我们的R-DFCIL显着超过了以前的方法,并实现了DFCIL的新最新性能。代码可从https://github.com/jianzhangcs/r-dfcil获得。
translated by 谷歌翻译
机器学习中的知识蒸馏是将知识从名为教师的大型模型转移到一个名为“学生”的较小模型的过程。知识蒸馏是将大型网络(教师)压缩到较小网络(学生)的技术之一,该网络可以部署在手机等小型设备中。当教师和学生之间的网络规模差距增加时,学生网络的表现就会下降。为了解决这个问题,在教师模型和名为助教模型的学生模型之间采用了中间模型,这反过来弥补了教师与学生之间的差距。在这项研究中,我们已经表明,使用多个助教模型,可以进一步改进学生模型(较小的模型)。我们使用加权集合学习将这些多个助教模型组合在一起,我们使用了差异评估优化算法来生成权重值。
translated by 谷歌翻译
基于蒸馏的压缩网络的性能受蒸馏质量的管辖。大型网络(教师)到较小网络(学生)的次优蒸馏的原因主要归因于给定教师与学生对的学习能力中的差距。虽然很难蒸馏所有教师的知识,但可以在很大程度上控制蒸馏质量以实现更好的性能。我们的实验表明,蒸馏品质主要受教师响应的质量来限制,这反过来又受到其反应中存在相似信息的影响。训练有素的大容量老师在学习细粒度辨别性质的过程中丢失了类别之间的相似性信息。没有相似性信息导致蒸馏过程从一个例子 - 许多阶级学习减少到一个示例 - 一类学习,从而限制了教师的不同知识的流程。由于隐式假设只能蒸馏出灌输所知,而不是仅关注知识蒸馏过程,我们仔细审查了知识序列过程。我们认为,对于给定的教师 - 学生对,通过在训练老师的同时找到批量大小和时代数量之间的甜蜜点,可以提高蒸馏品。我们讨论了找到这种甜蜜点以便更好地蒸馏的步骤。我们还提出了蒸馏假设,以区分知识蒸馏和正则化效果之间的蒸馏过程的行为。我们在三个不同的数据集中进行我们的所有实验。
translated by 谷歌翻译
灾难性的遗忘是阻碍在持续学习环境中部署深度学习算法的一个重大问题。已经提出了许多方法来解决灾难性的遗忘问题,在学习新任务时,代理商在旧任务中失去了其旧任务的概括能力。我们提出了一项替代策略,可以通过知识合并(CFA)处理灾难性遗忘,该策略从多个专门从事以前任务的多个异构教师模型中学习了学生网络,并可以应用于当前的离线方法。知识融合过程以单头方式进行,只有选定数量的记忆样本,没有注释。教师和学生不需要共享相同的网络结构,可以使异质任务适应紧凑或稀疏的数据表示。我们将我们的方法与不同策略的竞争基线进行比较,证明了我们的方法的优势。
translated by 谷歌翻译
现代隐私法规授予公民被产品,服务和公司遗忘的权利。在机器学习(ML)应用程序的情况下,这不仅需要从存储档案中删除数据,而且还需要从ML模型中删除数据。由于对ML应用所需的监管依从性的需求越来越大,因此机器上的学习已成为一个新兴的研究问题。被遗忘的请求的权利是从已训练的ML模型中删除特定集或一类数据的形式的形式。实际考虑因素排除了模型的重新划分,从而减去已删除的数据。现有的少数研究使用了整个培训数据,或一部分培训数据,或者在培训期间存储的一些元数据以更新模型权重进行学习。但是,严格的监管合规性需要时间限制数据。因此,在许多情况下,即使是出于学习目的,也无法访问与培训过程或培训样本有关的数据。因此,我们提出一个问题:是否有可能使用零培训样本实现学习?在本文中,我们介绍了零击机的新问题,即适合极端但实用的方案,在该场景中,零原始数据样本可供使用。然后,我们根据(a)误差最小化最大化噪声和(b)门控知识传递的误差,提出了两种新的解决方案,以零发出的计算机学习。这些方法在保持保留数据上的模型疗效的同时,从模型中删除了忘记数据的信息。零射击方法可以很好地保护模型反转攻击和成员推理攻击。我们引入了新的评估度量,解散指数(AIN),以有效地测量未学习方法的质量。实验显示了在基准视觉数据集中深度学习模型中学习的有希望的结果。
translated by 谷歌翻译
使用适当的电感偏差,反事实生成网络(CGN)可以从形状,纹理和背景歧管的随机组合中生成新图像。这些图像可以用于训练不变的分类器,避免了深层体系结构学习虚假相关性而不是有意义的问题。结果,改善了室外鲁棒性。但是,CGN体系结构包括多个参数化网络,即BigGan和U2-NET。培训这些网络需要适当的背景知识和广泛的计算。由于一个人并不总是能够访问精确的培训细节,也不总是拥有反事实的必要知识,因此我们的工作解决了以下问题:我们可以使用预先训练的CGN中嵌入的知识来培训低容量的模型,假设对架构组件的黑框访问(即仅访问验证的CGN模型)?在这个方向上,我们提出了一项名为SKDCGN的新颖作品,该作品尝试使用知识蒸馏(KD)尝试知识转移。在我们提出的架构中,每个独立的机制(形状,纹理,背景)都由一个学生“ tinygan”代表,该学生从预验证的老师“ Biggan”中学习。我们通过使用KD和适当的损失函数来证明使用最先进的数据集(例如ImageNet)和MNIST的疗效。此外,作为另一项贡献,我们的论文对CGN的组成机制进行了详尽的研究,以更好地了解每种机制如何影响不变分类器的分类精度。代码可用:https://github.com/ambekarsameer96/skdcgn
translated by 谷歌翻译
知识蒸馏(KD)是压缩边缘设备深层分类模型的有效工具。但是,KD的表现受教师和学生网络之间较大容量差距的影响。最近的方法已诉诸KD的多个教师助手(TA)设置,该设置依次降低了教师模型的大小,以相对弥合这些模型之间的尺寸差距。本文提出了一种称为“知识蒸馏”课程专家选择的新技术,以有效地增强在容量差距问题下对紧凑型学生的学习。该技术建立在以下假设的基础上:学生网络应逐渐使用分层的教学课程来逐步指导,因为它可以从较低(较高的)容量教师网络中更好地学习(硬)数据样本。具体而言,我们的方法是一种基于TA的逐渐的KD技术,它每个输入图像选择单个教师,该课程是基于通过对图像进行分类的难度驱动的课程的。在这项工作中,我们凭经验验证了我们的假设,并对CIFAR-10,CIFAR-100,CINIC-10和Imagenet数据集进行了严格的实验,并在类似VGG的模型,Resnets和WideresNets架构上显示出提高的准确性。
translated by 谷歌翻译
在这项工作中,我们提出了相互信息最大化知识蒸馏(MIMKD)。我们的方法使用对比目标来同时估计,并最大化教师和学生网络之间的本地和全球特征表示的相互信息的下限。我们通过广泛的实验证明,这可以通过将知识从更加性能但计算昂贵的模型转移来改善低容量模型的性能。这可用于产生更好的模型,可以在具有低计算资源的设备上运行。我们的方法灵活,我们可以将具有任意网络架构的教师蒸馏到任意学生网络。我们的经验结果表明,MIMKD优于各种学生教师对的竞争方法,具有不同的架构,以及学生网络的容量极低。我们能够通过从Reset-50蒸馏出来的知识,从基线精度为Shufflenetv2获得74.55%的精度。在Imagenet上,我们使用Reset-34教师网络将Reset-18网络从68.88%提高到70.32%的准确度(1.44%+)。
translated by 谷歌翻译
图形神经网络(GNN)已被广泛用于建模图形结构化数据,这是由于其在广泛的实用应用中令人印象深刻的性能。最近,GNNS的知识蒸馏(KD)在图形模型压缩和知识转移方面取得了显着进步。但是,大多数现有的KD方法都需要大量的真实数据,这些数据在实践中不容易获得,并且可能排除其在教师模型对稀有或难以获取数据集培训的情况下的适用性。为了解决这个问题,我们提出了第一个用于图形结构化数据(DFAD-GNN)的无数据对抗知识蒸馏的端到端框架。具体而言,我们的DFAD-GNN采用生成性对抗网络,主要由三个组成部分组成:预先训练的教师模型和学生模型被视为两个歧视者,并利用生成器来衍生训练图来从教师模型进入学生模型。在各种基准模型和六个代表性数据集上进行的广泛实验表明,我们的DFAD-GNN在图形分类任务中显着超过了最新的无数据基线。
translated by 谷歌翻译
本文旨在探讨神经架构搜索(NAS)的可行性仅在不使用任何原始训练数据的情况下给出预先训练的模型。这是实质保护,偏离避免等的重要情况。为实现这一目标,我们首先通过从预先训练的深神经网络中恢复知识来综合可用数据。然后我们使用合成数据及其预测的软标签来指导神经结构搜索。我们确定NAS任务需要具有足够的语义,多样性和来自自然图像的最小域间隙的合成数据(我们在此处瞄准)。对于语义,我们提出了递归标签校准,以产生更多的信息性输出。对于多样性,我们提出了一个区域更新策略,以产生更多样化和富集的合成数据。对于最小的域间隙,我们使用输入和特征级正则化来模拟潜在空间的原始数据分布。我们将我们提出的三个流行NAS算法实例化:飞镖,Proxylessnas和Spos。令人惊讶的是,我们的结果表明,通过搜索我们的合成数据来实现的架构,实现了与从原始的架构中搜索的架构相当的准确性,首次导出了NAS可以有效完成的结论如果合成方法设计良好,则无需访问原件或称为自然数据。我们的代码将公开提供。
translated by 谷歌翻译
无数据知识蒸馏(DFKD)最近一直吸引了研究社区的越来越关注,归因于其仅使用合成数据压缩模型的能力。尽管取得了令人鼓舞的成果,但最先进的DFKD方法仍然患有数据综合的低效率,使得无数据培训过程非常耗时,因此可以对大规模任务进行不适当的。在这项工作中,我们介绍了一个被称为FastDFKD的有效方案,使我们能够将DFKD加速到数量级。在我们的方法中,我们的方法是一种重用培训数据中共享共同功能的新策略,以便综合不同的数据实例。与先前的方法独立优化一组数据,我们建议学习一个Meta合成器,该综合仪寻求常见功能作为快速数据合成的初始化。因此,FastDFKD仅在几个步骤内实现数据综合,显着提高了无数据培训的效率。在CiFAR,NYUV2和Imagenet上的实验表明,所提出的FastDFKD实现了10美元\时代$甚至100美元\倍$加速,同时保持与现有技术的表现。
translated by 谷歌翻译
知识蒸馏是一种培训小型学生网络的流行技术,以模仿更大的教师模型,例如网络的集合。我们表明,虽然知识蒸馏可以改善学生泛化,但它通常不得如此普遍地工作:虽然在教师和学生的预测分布之间,甚至在学生容量的情况下,通常仍然存在令人惊讶的差异完美地匹配老师。我们认为优化的困难是为什么学生无法与老师匹配的关键原因。我们还展示了用于蒸馏的数据集的细节如何在学生与老师匹配的紧密关系中发挥作用 - 以及教师矛盾的教师并不总是导致更好的学生泛化。
translated by 谷歌翻译