We discuss the prediction accuracy of assumed statistical models in terms of prediction errors for the generalized linear model and penalized maximum likelihood methods. We derive the forms of estimators for the prediction errors: C p criterion, information criteria, and leave-one-out cross validation (LOOCV) error, using the generalized approximate message passing (GAMP) algorithm and replica method. These estimators coincide with each other when the number of model parameters is sufficiently small; however, there is a discrepancy between them in particular in the overparametrized region where the number of model parameters is larger than the data dimension. In this paper, we review the prediction errors and corresponding estimators, and discuss their differences. In the framework of GAMP, we show that the information criteria can be expressed by using the variance of the estimates. Further, we demonstrate how to approach LOOCV error from the information criteria by utilizing the expression provided by GAMP.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
理论上,从理论上分析$ \ ell_ {1} $的典型学习性能 - 正规化的线性回归($ \ ell_1 $ -linr),用于使用统计力学中的副本方法进行模型选择。对于顺磁阶段的典型随机常规图,获得了对$ \ ell_1 $ -LinR的典型样本复杂度的准确估计。值得注意的是,尽管模型拼写错误,$ \ ell_1 $ -linr是模型选择,其与$ \ ell_ {1} $ - 正常化的逻辑回归($ \ ell_1 $ -logr),即,$ m = \ mathcal {o} \ left(\ log n \ light)$,其中$ n $是ising模型的变量数。此外,我们提供了一种有效的方法,可以准确地预测$ \ ell_1 $ -Linr的非渐近行为,以便适度$ M,N $,如精度和召回。仿真在理论预测和实验结果之间表现出相当愉快的一致性,即使对于具有许多环路的图表,也支持我们的研究结果。虽然本文主要侧重于$ \ ell_1 $ -Linr,但我们的方法很容易适用于精确地表征广泛类别的$ \ ell_ {1} $的典型学习表演 - 正常化$ M $-estimators,包括$ \ ell_1 $ - LogR和互动筛查。
translated by 谷歌翻译
多级分类问题的广义线性模型是现代机器学习任务的基本构建块之一。在本手稿中,我们通过具有任何凸损耗和正规化的经验风险最小化(ERM)来描述与通用手段和协方士的k $高斯的混合。特别是,我们证明了表征ERM估计的精确渐近剂,以高维度,在文献中扩展了关于高斯混合分类的几个先前结果。我们举例说明我们在统计学习中的两个兴趣任务中的两个任务:a)与稀疏手段的混合物进行分类,我们研究了$ \ ell_2 $的$ \ ell_1 $罚款的效率; b)Max-Margin多级分类,在那里我们在$ k> 2 $的多级逻辑最大似然估计器上表征了相位过渡。最后,我们讨论了我们的理论如何超出合成数据的范围,显示在不同的情况下,高斯混合在真实数据集中密切地捕获了分类任务的学习曲线。
translated by 谷歌翻译
我们认为越来越复杂的矩阵去噪和贝叶斯最佳设置中的文章学习模型,在挑战性的政权中,在矩阵推断出与系统尺寸线性的排名增加。这与大多数现有的文献相比,与低秩(即常数级别)制度相关的文献相反。我们首先考虑一类旋转不变的矩阵去噪,使用来自随机矩阵理论的标准技术来计算的互动信息和最小均方误差。接下来,我们分析了字典学习的更具挑战性模式。为此,我们将复制方法与随机矩阵理论一起介绍了复制品方法的新组合,共同矩阵理论,Coined光谱副本方法。它允许我们猜测隐藏表示与字典学习问题的嘈杂数据之间的相互信息的变分形式,以及定量最佳重建误差的重叠。所提出的方法从$ \ theta(n ^ 2)$(矩阵条目)到$ \ theta(n)$(特征值或奇异值)减少自由度的数量,并产生的互信息的库仑气体表示让人想起物理学中的矩阵模型。主要成分是使用Harishchandra-Itzykson-Zuber球形积分,结合新的复制对称解耦Ansatz,在特定重叠矩阵的特征值(或奇异值)的概率分布的水平上。
translated by 谷歌翻译
了解特征学习如何影响概括是现代深度学习理论的最重要目标之一。在这里,我们研究了学习表示的能力如何影响一类简单模型的概括性能:深贝叶斯线性神经网络接受了非结构化高斯数据的训练。通过将深层随机特征模型与所有训练所有层的深网进行比较,我们将提供详细的表征宽度,深度,数据密度和先验不匹配之间的相互作用。我们表明,在存在标签噪声的情况下,这两种模型都显示出样本的双重变化行为。如果有狭窄的瓶颈层,那么随机特征模型还可以显示模型的双重变化,而深网不显示这些分歧。随机特征模型可以具有特定的宽度,这些宽度对于在给定的数据密度下是最佳的概括,同时使神经网络尽可能宽或狭窄始终是最佳的。此外,我们表明,对内核限制学习曲线的前阶校正无法区分所有培训所有层的随机特征模型和深层网络。综上所述,我们的发现开始阐明建筑细节如何影响这种简单的深层回归模型类别的概括性能。
translated by 谷歌翻译
我们介绍树-AMP,站在树近似消息传递,用于高维树结构模型的组成推理的Python包。该包提供统一框架,用于研究以前导出的多种机器学习任务的几种近似消息传递算法,例如广义线性模型,多层网络的推断,矩阵分解和使用不可惩罚的重建。对于某些型号,可以通过状态进化理论上预测算法的渐近性能,并通过自由熵形式主义估计的测量熵。通过设计模块化:实现因子的每个模块可以与其他模块一起组成,以解决复杂的推理任务。用户只需要声明模型的因子图:推理算法,状态演化和熵估计是完全自动化的。
translated by 谷歌翻译
在本文中,我们提出了一个参数化因素,该因子可以对随机变量之间存在线性依赖性的高斯网络进行推理。我们的因素表示有效地是对传统高斯参数化的概括,在这种情况下,协方差矩阵的正定限制已被放松。为此,我们得出了各种统计操作和结果(例如,随机变量的边缘化,乘法和仿射转换)将高斯因子的能力扩展到这些退化设置。通过使用此原则性因素定义,可以以几乎没有额外的计算成本来准确,自动适应退化。作为例证,我们将方法应用于一个代表性的示例,该示例涉及合作移动机器人的递归状态估计。
translated by 谷歌翻译
生成对抗网络(GAN)在数据生成方面取得了巨大成功。但是,其统计特性尚未完全理解。在本文中,我们考虑了GAN的一般$ f $ divergence公式的统计行为,其中包括Kullback- Leibler Divergence与最大似然原理密切相关。我们表明,对于正确指定的参数生成模型,在适当的规律性条件下,所有具有相同歧视类别类别的$ f $ divergence gans均在渐近上等效。 Moreover, with an appropriately chosen local discriminator, they become equivalent to the maximum likelihood estimate asymptotically.对于被误解的生成模型,具有不同$ f $ -Divergences {收敛到不同估计器}的gan,因此无法直接比较。但是,结果表明,对于某些常用的$ f $ -Diverences,原始的$ f $ gan并不是最佳的,因为当更换原始$ f $ gan配方中的判别器培训时,可以实现较小的渐近方差通过逻辑回归。结果估计方法称为对抗梯度估计(年龄)。提供了实证研究来支持该理论,并证明了年龄的优势,而不是模型错误的原始$ f $ gans。
translated by 谷歌翻译
最近有兴趣的兴趣在教师学生环境中的各种普遍性线性估计问题中的渐近重建性能研究,特别是对于I.I.D标准正常矩阵的案例。在这里,我们超越这些矩阵,并证明了具有具有任意界限频谱的旋转不变数据矩阵的凸遍的线性模型的重建性能的分析公式,严格地确认使用来自统计物理的副本衍生的猜想。该公式包括许多问题,例如压缩感测或稀疏物流分类。通过利用消息通过算法和迭代的统计特性来实现证明,允许表征估计器的渐近实证分布。我们的证据是基于构建Oracle多层向量近似消息传递算法的会聚序列的构建,其中通过检查等效动态系统的稳定性来完成收敛分析。我们说明了我们对主流学习方法的数值示例的要求,例如稀疏的逻辑回归和线性支持矢量分类器,显示中等大小模拟和渐近预测之间的良好一致性。
translated by 谷歌翻译
教师 - 学生模型提供了一个框架,其中可以以封闭形式描述高维监督学习的典型情况。高斯I.I.D的假设然而,可以认为典型教师 - 学生模型的输入数据可以被认为过于限制,以捕获现实数据集的行为。在本文中,我们介绍了教师和学生可以在不同的空格上行动的模型的高斯协变态概括,以固定的,而是通用的特征映射。虽然仍处于封闭形式的仍然可解决,但这种概括能够捕获广泛的现实数据集的学习曲线,从而兑现师生框架的潜力。我们的贡献是两倍:首先,我们证明了渐近培训损失和泛化误差的严格公式。其次,我们呈现了许多情况,其中模型的学习曲线捕获了使用内​​核回归和分类学习的现实数据集之一,其中盒出开箱特征映射,例如随机投影或散射变换,或者与散射变换预先学习的 - 例如通过培训多层神经网络学到的特征。我们讨论了框架的权力和局限性。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
这项调查旨在提供线性模型及其背后的理论的介绍。我们的目标是对读者进行严格的介绍,并事先接触普通最小二乘。在机器学习中,输出通常是输入的非线性函数。深度学习甚至旨在找到需要大量计算的许多层的非线性依赖性。但是,这些算法中的大多数都基于简单的线性模型。然后,我们从不同视图中描述线性模型,并找到模型背后的属性和理论。线性模型是回归问题中的主要技术,其主要工具是最小平方近似,可最大程度地减少平方误差之和。当我们有兴趣找到回归函数时,这是一个自然的选择,该回归函数可以最大程度地减少相应的预期平方误差。这项调查主要是目的的摘要,即线性模型背后的重要理论的重要性,例如分布理论,最小方差估计器。我们首先从三种不同的角度描述了普通的最小二乘,我们会以随机噪声和高斯噪声干扰模型。通过高斯噪声,该模型产生了可能性,因此我们引入了最大似然估计器。它还通过这种高斯干扰发展了一些分布理论。最小二乘的分布理论将帮助我们回答各种问题并引入相关应用。然后,我们证明最小二乘是均值误差的最佳无偏线性模型,最重要的是,它实际上接近了理论上的极限。我们最终以贝叶斯方法及以后的线性模型结束。
translated by 谷歌翻译
与经典线性模型不同,非线性生成模型在统计学习的文献中被稀疏地解决。这项工作旨在引起对这些模型及其保密潜力的关注。为此,我们调用了复制方法,以在反相反的问题中得出渐近归一化的横熵,其生成模型由具有通用协方差函数的高斯随机场描述。我们的推导进一步证明了贝叶斯估计量的渐近统计解耦,并为给定的非线性模型指定了解耦设置。复制解决方案描述了严格的非线性模型建立了全有或全无的相变:存在一个关键负载,最佳贝叶斯推断从完美的学习变为不相关的学习。基于这一发现,我们设计了一种新的安全编码方案,该方案可实现窃听通道的保密能力。这个有趣的结果意味着,严格的非线性生成模型是完美的,没有任何安全编码。我们通过分析说明性模型的完全安全和可靠的推论来证明后一种陈述是合理的。
translated by 谷歌翻译
这是机器学习中(主要是)笔和纸练习的集合。练习在以下主题上:线性代数,优化,定向图形模型,无向图形模型,图形模型的表达能力,因子图和消息传递,隐藏马尔可夫模型的推断,基于模型的学习(包括ICA和非正态模型),采样和蒙特卡洛整合以及变异推断。
translated by 谷歌翻译
强大的机器学习模型的开发中的一个重要障碍是协变量的转变,当训练和测试集的输入分布时发生的分配换档形式在条件标签分布保持不变时发生。尽管现实世界应用的协变量转变普遍存在,但在现代机器学习背景下的理论理解仍然缺乏。在这项工作中,我们检查协变量的随机特征回归的精确高尺度渐近性,并在该设置中提出了限制测试误差,偏差和方差的精确表征。我们的结果激发了一种自然部分秩序,通过协变速转移,提供足够的条件来确定何时何时损害(甚至有助于)测试性能。我们发现,过度分辨率模型表现出增强的协会转变的鲁棒性,为这种有趣现象提供了第一个理论解释之一。此外,我们的分析揭示了分销和分发外概率性能之间的精确线性关系,为这一令人惊讶的近期实证观察提供了解释。
translated by 谷歌翻译
二元erceptron是非凸优化的监督学习的基本模型,这是流行深度学习的根源。二进制Perceptron能够通过计算二进制突触的边际概率来实现随机高维数据的分类。算法不稳定性与模型的平衡分析之间的关系仍然难以捉摸。这里,我们通过表明算法定点周围的不稳定性条件与用于打破自由能量功能的副本对称鞍点解决方案的不稳定性相同的关系来建立关系。因此,我们的分析提供了促进促进更复杂的神经网络的非凸学学习动态和统计力学特性之间的差距的见解。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=astata.Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
translated by 谷歌翻译