在做出与农业有关的决策时,对特定地区的干旱的可能性至关重要。预测这种概率对于同时管理和挑战至关重要。预测模型应考虑在关注区域和相邻区域之间具有复杂关系的多个因素。我们通过提出基于时空神经网络的端到端解决方案来解决这个问题。该模型预测了帕尔默干旱严重程度指数(PDSI)的感兴趣子区域。气候模型的预测为模型提供了额外的知识来源,从而导致更准确的干旱预测。我们的模型的精度比基线梯度提升解决方案更好,因为它的$ r^2 $得分为0.90美元,而梯度提升的$ 0.85 $。具体关注是对模型的适用性范围。我们检查全球各个地区,以在不同条件下验证它们。我们通过分析不同场景的未来气候变化如何影响PDSI以及我们的模型如何帮助做出更好的决策和更可持续的经济学来补充结果。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
对于电网操作,具有精细时间和空间分辨率的太阳能发电准确预测对于电网的操作至关重要。然而,与数值天气预报(NWP)结合机器学习的最先进方法具有粗略分辨率。在本文中,我们采用曲线图信号处理透视和型号的多网站光伏(PV)生产时间序列作为图表上的信号,以捕获它们的时空依赖性并实现更高的空间和时间分辨率预测。我们提出了两种新颖的图形神经网络模型,用于确定性多站点PV预测,被称为图形 - 卷积的长期内存(GCLSTM)和图形 - 卷积变压器(GCTRAFO)模型。这些方法仅依赖于生产数据并利用PV系统提供密集的虚拟气象站网络的直觉。所提出的方法是在整整一年的两组数据集中评估:1)来自304个真实光伏系统的生产数据,以及2)模拟生产1000个PV系统,包括瑞士分布。该拟议的模型优于最先进的多站点预测方法,用于预测前方6小时的预测视野。此外,所提出的模型以NWP优于最先进的单站点方法,如前方的视野上的输入。
translated by 谷歌翻译
太阳能现在是历史上最便宜的电力形式。不幸的是,由于其变异性,显着提高栅格的太阳能的一部分仍然具有挑战性,这使得电力的供需平衡更加困难。虽然热发电机坡度 - 它们可以改变输出的最高速率 - 是有限的,太阳能的坡度基本上是无限的。因此,准确的近期太阳能预测或垂圈,对于提供预警来调整热发电机输出,以响应于太阳能变化来调整热发电机,以确保平衡供需。为了解决问题,本文开发了使用自我监督学习的丰富和易于使用的多光谱卫星数据的太阳能垂圈的一般模型。具体而言,我们使用卷积神经网络(CNN)和长短期内存网络(LSTM)开发深度自动回归模型,这些模型在多个位置训练全球培训,以预测最近推出的最近收集的时空数据的未来观察-R系列卫星。我们的模型估计了基于卫星观测的未来的太阳辐照度,我们向较小的场地特定的太阳能数据培训的回归模型提供,以提供近期太阳能光伏(PV)预测,其考虑了现场特征的特征。我们评估了我们在25个太阳能场所的不同覆盖区域和预测视野的方法,并表明我们的方法利用地面真理观察结果产生靠近模型的错误。
translated by 谷歌翻译
冰雹风险评估对于估计和减少对农作物,果园和基础设施的破坏是必要的。此外,它有助于估计和减少企业,尤其是保险公司的损失。但是冰雹预测具有挑战性。用于此目的的设计模型的数据是树维的地理空间时间序列。关于可用数据集的分辨率,冰雹是一个非常本地的事件。同样,冰雹事件很少见 - 观测中只有1%的目标标记为“冰雹”。现象和短期冰雹预测的模型正在改善。将机器学习模型引入气象学领域并不是什么新鲜事。还有各种气候模型反映了未来气候变化的可能情况。但是,没有用于数据驱动的机器学习模型来预测给定区域的冰雹频率变化。后一项任务的第一种可能方法是忽略空间和时间结构,并开发一种能够将气象变量的给定垂直轮廓分类为有利于冰雹形成的模型。尽管这种方法肯定忽略了重要的信息,但它的加权非常轻,很容易扩展,因为它将观察值视为彼此独立的。更高级的方法是设计能够处理地理空间数据的神经网络。我们在这里的想法是将负责处理空间数据处理的卷积层与能够使用时间结构工作的复发神经网络块相结合。这项研究比较了两种方法,并引入了一个适合预测冰雹频率变化的任务的模型。
translated by 谷歌翻译
我们在在线环境中研究了非线性预测,并引入了混合模型,该模型通过端到端体系结构有效地减轻了对手工设计的功能的需求和传统非线性预测/回归方法的手动模型选择问题。特别是,我们使用递归结构从顺序信号中提取特征,同时保留状态信息,即历史记录和增强决策树以产生最终输出。该连接是以端到端方式的,我们使用随机梯度下降共同优化整个体系结构,我们还为此提供了向后的通过更新方程。特别是,我们采用了一个经常性的神经网络(LSTM)来从顺序数据中提取自适应特征,并提取梯度增强机械(Soft GBDT),以进行有效的监督回归。我们的框架是通用的,因此可以使用其他深度学习体系结构进行特征提取(例如RNN和GRU)和机器学习算法进行决策,只要它们是可区分的。我们证明了算法对合成数据的学习行为以及各种现实生活数据集对常规方法的显着性能改进。此外,我们公开分享提出的方法的源代码,以促进进一步的研究。
translated by 谷歌翻译
It is crucial for the service provider to comprehend and forecast mobile traffic in large-scale cellular networks in order to govern and manage mechanisms for base station placement, load balancing, and network planning. The purpose of this article is to extract and simulate traffic patterns from more than 14,000 cells that have been installed in different metropolitan areas. To do this, we create, implement, and assess a method in which cells are first categorized by their point of interest and then clustered based on the temporal distribution of cells in each region. The proposed model has been tested using real-world 5G mobile traffic datasets collected over 31 weeks in various cities. We found that our proposed model performed well in predicting mobile traffic patterns up to 2 weeks in advance. Our model outperformed the base model in most areas of interest and generally achieved up to 15\% less prediction error compared to the na\"ive approach. This indicates that our approach is effective in predicting mobile traffic patterns in large-scale cellular networks.
translated by 谷歌翻译
为了减少乘客等候时间和驾驶员搜索摩擦,骑行公司需要准确地预测时空需求和供需差距。然而,由于乘坐乘车系统中的需求和供需差距有关的时空依赖性,对需求和供需差距的准确预测是一项艰巨的任务。此外,由于机密性和隐私问题,乘车通过删除区域的空间邻接信息,有时会向研究人员发布,这阻碍了时空依赖的检测。为此,本文提出了一种新颖的时空深度学习架构,用于预测具有匿名空间邻接信息的乘车 - HaIning系统中的需求和供需差距,其与时空深度学习架构集成了特征重要性层含有一维卷积神经网络(CNN)和区域分布独立的复发性神经网络(INDRNN)。开发的架构与DIDI Chuxing的真实世界数据集进行了测试,这表明我们的模型基于所提出的体系结构可以优于传统的时间序列模型(例如,Arima)和机器学习模型(例如,梯度升压机,分布式随机林,广义线性模型,人工神经网络)。另外,该特征重要层通过揭示预测中使用的输入特征的贡献提供了模型的解释。
translated by 谷歌翻译
交通预测对于新时代智能城市的交通建设至关重要。但是,流量数据的复杂空间和时间依赖性使流量预测极具挑战性。大多数现有的流量预测方法都依赖于预定义的邻接矩阵来对时空依赖性建模。但是,道路交通状态是高度实时的,因此邻接矩阵应随着时间的推移而动态变化。本文介绍了一个新的多空间融合图复发网络(MSTFGRN),以解决上述问题。该网络提出了一种数据驱动的加权邻接矩阵生成方法,以补偿预定义的邻接矩阵未反映的实时空间依赖性。它还通过在不同矩的平行时空关系上执行新的双向时空融合操作来有效地学习隐藏的时空依赖性。最后,通过将全局注意机制集成到时空融合模块中,同时捕获了全局时空依赖性。对四个大型现实世界流量数据集进行的广泛试验表明,与替代基线相比,我们的方法实现了最先进的性能。
translated by 谷歌翻译
As ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve congestion, and enhance the passenger experience. This paper proposes UberNet, a deep learning Convolutional Neural Network for short-term prediction of demand for ride-hailing services. UberNet empploys a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. The proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UberNet, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. By comparing the performance of UberNet with several other approaches, we show that the prediction quality of the model is highly competitive. Further, Ubernet's prediction performance is better when using economic, social and built environment features. This suggests that Ubernet is more naturally suited to including complex motivators in making real-time passenger demand predictions for ride-hailing services.
translated by 谷歌翻译
Deep learning approaches for spatio-temporal prediction problems such as crowd-flow prediction assumes data to be of fixed and regular shaped tensor and face challenges of handling irregular, sparse data tensor. This poses limitations in use-case scenarios such as predicting visit counts of individuals' for a given spatial area at a particular temporal resolution using raster/image format representation of the geographical region, since the movement patterns of an individual can be largely restricted and localized to a certain part of the raster. Additionally, current deep-learning approaches for solving such problem doesn't account for the geographical awareness of a region while modelling the spatio-temporal movement patterns of an individual. To address these limitations, there is a need to develop a novel strategy and modeling approach that can handle both sparse, irregular data while incorporating geo-awareness in the model. In this paper, we make use of quadtree as the data structure for representing the image and introduce a novel geo-aware enabled deep learning layer, GA-ConvLSTM that performs the convolution operation based on a novel geo-aware module based on quadtree data structure for incorporating spatial dependencies while maintaining the recurrent mechanism for accounting for temporal dependencies. We present this approach in the context of the problem of predicting spatial behaviors of an individual (e.g., frequent visits to specific locations) through deep-learning based predictive model, GADST-Predict. Experimental results on two GPS based trace data shows that the proposed method is effective in handling frequency visits over different use-cases with considerable high accuracy.
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
准确的负载预测对于电力系统的电力市场运营以及电力系统中的其他实时决策任务至关重要。本文认为社区内的住宅客户的短期负荷预测(STLF)问题。现有的STLF工作主要侧重于预测馈线系统或单一客户的汇总负荷,但是在预测单个设备水平的负荷上,已经努力。在这项工作中,我们介绍了一种用于有效预测各个电器的功耗的STLF算法。所提出的方法在深度学习中强大的经常性神经网络(RNN)架构,称为长短短期记忆(LSTM)。当每个设备具有唯一重复的消耗模式时,将跟踪预测误差的模式,使得过去的预测误差可用于提高最终预测性能。实际负载数据集的数值测试证明了在现有的基于LSTM的方法和其他基准方法上提高了所提出的方法。
translated by 谷歌翻译
Forecasting time series with extreme events has been a challenging and prevalent research topic, especially when the time series data are affected by complicated uncertain factors, such as is the case in hydrologic prediction. Diverse traditional and deep learning models have been applied to discover the nonlinear relationships and recognize the complex patterns in these types of data. However, existing methods usually ignore the negative influence of imbalanced data, or severe events, on model training. Moreover, methods are usually evaluated on a small number of generally well-behaved time series, which does not show their ability to generalize. To tackle these issues, we propose a novel probability-enhanced neural network model, called NEC+, which concurrently learns extreme and normal prediction functions and a way to choose among them via selective back propagation. We evaluate the proposed model on the difficult 3-day ahead hourly water level prediction task applied to 9 reservoirs in California. Experimental results demonstrate that the proposed model significantly outperforms state-of-the-art baselines and exhibits superior generalization ability on data with diverse distributions.
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
为了提高风能生产的安全性和可靠性,短期预测已成为最重要的。这项研究的重点是挪威大陆架的多步时时空风速预测。图形神经网络(GNN)体系结构用于提取空间依赖性,具有不同的更新功能以学习时间相关性。这些更新功能是使用不同的神经网络体系结构实现的。近年来,一种这样的架构,即变压器,在序列建模中变得越来越流行。已经提出了对原始体系结构的各种改动,以更好地促进时间序列预测,本研究的重点是告密者Logsparse Transformer和AutoFormer。这是第一次将logsparse变压器和自动形态应用于风预测,并且第一次以任何一种或告密者的形式在时空设置以进行风向预测。通过比较时空长的短期记忆(LSTM)和多层感知器(MLP)模型,该研究表明,使用改变的变压器体系结构作为GNN中更新功能的模型能够超越这些功能。此外,我们提出了快速的傅立叶变压器(FFTRANSFORMER),该变压器是基于信号分解的新型变压器体系结构,由两个单独的流组成,分别分析趋势和周期性成分。发现FFTRANSFORMER和自动成型器可在10分钟和1小时的预测中取得优异的结果,而FFTRANSFORMER显着优于所有其他模型的4小时预测。最后,通过改变图表表示的连通性程度,该研究明确说明了所有模型如何利用空间依赖性来改善局部短期风速预测。
translated by 谷歌翻译
间歇时间序列的分层预测是研究和实证研究中的挑战。庞大的研究侧重于提高每个层次结构的准确性,尤其是底部层次的间歇时间序列。然后,在每个层次结构上调和预测,以进一步提高整体性能。在本文中,我们提出了一种与分层对准方法的预测,该方法将底部水平预测视为可变的柔和预测,以确保在层次结构的上层上的预测精度。我们采用纯深度学习预测方法的N- BEATS对高层的连续时间序列和广泛使用的基于树的算法LightGBM为底层间歇时间序列。具有对准方法的分层预测是自下而上方法的简单且有效的变体,其占难以观察到底部水平的偏差。它允许在较低级别的次优预测保留更高的整体性能。该研究在本实证研究中由第一作者在M5预测准确性竞争期间开发,排名第二。该方法也是良好的商业战略规划有益。
translated by 谷歌翻译