Solving real-world optimal control problems are challenging tasks, as the system dynamics can be highly non-linear or including nonconvex objectives and constraints, while in some cases the dynamics are unknown, making it hard to numerically solve the optimal control actions. To deal with such modeling and computation challenges, in this paper, we integrate Neural Networks with the Pontryagin's Minimum Principle (PMP), and propose a computationally efficient framework NN-PMP. The resulting controller can be implemented for systems with unknown and complex dynamics. It can not only utilize the accurate surrogate models parameterized by neural networks, but also efficiently recover the optimality conditions along with the optimal action sequences via PMP conditions. A toy example on a nonlinear Martian Base operation along with a real-world lossy energy storage arbitrage example demonstrates our proposed NN-PMP is a general and versatile computation tool for finding optimal solutions. Compared with solutions provided by the numerical optimization solver with approximated linear dynamics, NN-PMP achieves more efficient system modeling and higher performance in terms of control objectives.
translated by 谷歌翻译
我们提出了一种基于差分动态编程框架的算法,以处理轨迹优化问题,其中地平线在线确定而不是修复先验。该算法表现出直线,二次,时间不变问题的精确一步收敛,并且足够快,以便实时非线性模型预测控制。我们在离散时间案例中显示了非线性算法的派生,并将该算法应用于各种非线性问题。最后,我们展示了与标准MPC控制器相比的最佳地平线模型预测控制方案在平面机器人的障碍避免问题上的功效。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
现有的数据驱动和反馈流量控制策略不考虑实时数据测量的异质性。此外,对于缺乏数据效率,传统的加固学习方法(RL)方法通常会缓慢收敛。此外,常规的最佳外围控制方案需要对系统动力学的精确了解,因此对内源性不确定性会很脆弱。为了应对这些挑战,这项工作提出了一种基于不可或缺的增强学习(IRL)的方法来学习宏观交通动态,以进行自适应最佳周边控制。这项工作为运输文献做出了以下主要贡献:(a)开发连续的时间控制,并具有离散增益更新以适应离散时间传感器数据。 (b)为了降低采样复杂性并更有效地使用可用数据,将体验重播(ER)技术引入IRL算法。 (c)所提出的方法以“无模型”方式放松模型校准的要求,该方式可以稳健地进行建模不确定性,并通过数据驱动的RL算法增强实时性能。 (d)通过Lyapunov理论证明了基于IRL的算法和受控交通动力学的稳定性的收敛性。最佳控制定律被参数化,然后通过神经网络(NN)近似,从而缓解计算复杂性。在不需要模型线性化的同时,考虑了状态和输入约束。提出了数值示例和仿真实验,以验证所提出方法的有效性和效率。
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
这项研究为连续时间(确定性)动态系统的结构化非线性控制提供了一个政策优化框架。所提出的方法根据相关科学知识(例如Lyapunov稳定理论或领域经验)规定控制器的结构,同时考虑给定结构内的可调元素作为神经网络的参数化点。为了优化作为神经网络权重的函数代表的成本,提出的方法利用基于伴随灵敏度分析的连续时间策略梯度方法作为正确和性能计算成本梯度的手段。这使得将反馈控制器的分析衍生结构的稳定性,鲁棒性和物理解释性结合在一起,并结合了机器学习技术提供的代表性灵活性和优化的结果性能。这种用于固定结构控制合成的混合范式对于优化适应性非线性控制器以提高在线操作中的性能特别有用,在线操作中,现有理论在结构上占上风,同时缺乏对收益和不确定性调谐的明确分析理解控制性能特征的模型基础函数。航空应用上的数值实验说明了结构化非线性控制器优化框架的实用性。
translated by 谷歌翻译
我们向连续状态马尔可夫决策过程(MDP)提出了一种扩散近似方法,该方法可用于解决非结构化的越野环境中的自主导航和控制。与呈现完全已知的状态转换模型的大多数决策定理计划框架相比,我们设计了一种方法,该方法消除了这种强烈假设,这些假设通常非常难以在现实中工程师。我们首先采用价值函数的二阶泰勒扩展。然后通过部分微分方程近似贝尔曼的最优性方程,其仅依赖于转换模型的第一和第二矩。通过组合价值函数的内核表示,然后设计一种有效的策略迭代算法,其策略评估步骤可以表示为特征的方程式的线性系统,其特征是由有限组支持状态。我们首先通过大量的仿真以2D美元的$ 2D $避让和2.5d $地形导航问题进行验证。结果表明,拟议的方法在几个基线上导致了卓越的性能。然后,我们开发一个系统,该系统将我们的决策框架整合,与船上感知,并在杂乱的室内和非结构化的户外环境中进行现实世界的实验。物理系统的结果进一步展示了我们在挑战现实世界环境中的方法的适用性。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
本文开发了一个分布式可区分的动态游戏(DDDG)框架,该框架可以从演示中学习多机器人协调。我们将多机器人协调表示为动态游戏,其中机器人的行为由其自身的动态和目标决定,这也取决于他人的行为。因此,可以通过调整每个机器人的客观和动力学来调整协调。提出的DDDG使每个机器人能够以分布式方式自动调整其单个动力学和目标,从而最大程度地减少其轨迹和演示之间的不匹配。此过程需要前向通道的新分布式设计,在该设计中,所有机器人都协作寻求NASH均衡行为,以及一个向后通行,在该阶段通过通信图传播梯度。我们在仿真中测试了DDDG,并给定不同任务配置的四个小组。结果证明了DDDG从演示中学习多机器人协调的能力
translated by 谷歌翻译
Reach-避免最佳控制问题,其中系统必须在保持某些目标条件的同时保持清晰的不可接受的故障模式,是自主机器人系统的安全和活力保证的核心,但它们的确切解决方案是复杂的动态和环境的难以解决。最近的钢筋学习方法的成功与绩效目标大致解决最佳控制问题,使其应用​​于认证问题有吸引力;然而,加固学习中使用的拉格朗日型客观不适合编码时间逻辑要求。最近的工作表明,在将加强学习机械扩展到安全型问题时,其目标不是总和,但随着时间的推移最小(或最大)。在这项工作中,我们概括了加强学习制定,以处理覆盖范围的所有最佳控制问题。我们推出了一个时间折扣 - 避免了收缩映射属性的贝尔曼备份,并证明了所得达到避免Q学习算法在类似条件下会聚到传统的拉格朗郎类型问题,从而避免任意紧凑的保守近似值放。我们进一步证明了这种配方利用深度加强学习方法,通过将近似解决方案视为模型预测监督控制框架中的不受信任的oracles来保持零违规保证。我们评估我们在一系列非线性系统上的提出框架,验证了对分析和数值解决方案的结果,并通过Monte Carlo仿真在以前的棘手问题中。我们的结果为一系列基于学习的自治行为开放了大门,具有机器人和自动化的应用。有关代码和补充材料,请参阅https://github.com/saferoboticslab/safett_rl。
translated by 谷歌翻译
我们介绍了基于目标观点的线性和二次近似值的非线性控制算法的实现。我们提出了一种梯度下降,一种高斯 - 纽顿方法,一种牛顿方法,具有线性二次或二次近似值的差分动态编程方法,各种线路搜索策略以及这些算法的正则变体。我们在可区分的编程框架中得出所有算法的计算复杂性,并提出足够的最佳条件。我们比较了几个基准的算法,例如使用汽车的自行车模型进行自动驾驶。该算法用公开可用的软件包中的可区分编程语言进行编码。
translated by 谷歌翻译
由于其固有的非线性和高度的自由度,对连续体软机器人的建模和控制仍然是一项艰巨的任务。这些复杂性阻碍了适合实时控制的高保真模型的构建。尽管已经提出了各种模型和基于学习的方法来应对这些挑战,但它们缺乏普遍性,很少保留动态的结构。在这项工作中,我们提出了一种新的,数据驱动的方法,用于从数据中提取面向控制的模型。我们克服了上面概述的问题,并证明了我们对光谱次级减少(SSMR)的卓越性能 - \'a-vis the Art的状态。
translated by 谷歌翻译
许多现有的景点(ROA)分析工具难以解决具有大规模神经网络(NN)政策和/或高维感测模式的反馈系统,如相机。在本文中,我们定制了在对冲学习界中开发的预计梯度下降(PGD)攻击方法作为大型非线性系统的通用ROA分析工具和基于端到端的感知的控制。我们表明ROA分析可以近似为约束的最大化问题,其目标是找到最坏情况的最坏情况初始条件最多。然后我们提出了两个基于PGD的迭代方法,可用于解决所得的受限最大化问题。我们的分析不是基于Lyapunov理论,因此需要问题结构的最低信息。在基于模型的设置中,我们示出了可以使用反向传播有效地执行PGD更新。在无模型设置(与基于感知的控制的ROA分析更相关)中,我们提出了一个有限差异的PGD估计,这是一般的,只需要一个黑盒模拟器来产生闭环系统的轨迹给予任何初始状态。我们在具有大规模NN政策和高维图像观测的几个数字示例下展示了我们分析工具的可扩展性和一般性。我们认为,我们所提出的分析是进一步了解大规模非线性系统的闭环稳定性和基于感知的控制的有意义的初步步骤。
translated by 谷歌翻译
安全限制和最优性很重要,但有时控制器有时相互冲突的标准。虽然这些标准通常与不同的工具单独解决以维持正式保障,但在惩罚失败时,加强学习的常见做法是惩罚,以惩罚为单纯的启发式。我们严格地检查了安全性和最优性与惩罚的关系,并对安全价值函数进行了足够的条件:对给定任务的最佳价值函数,并强制执行安全约束。我们通过强大的二元性证明,揭示这种关系的结构,表明始终存在一个有限的惩罚,引起安全值功能。这种惩罚并不是独特的,但大不束缚:更大的惩罚不会伤害最优性。虽然通常无法计算最低所需的惩罚,但我们揭示了清晰的惩罚,奖励,折扣因素和动态互动的结构。这种洞察力建议实用,理论引导的启发式设计奖励功能,用于控制安全性很重要的控制问题。
translated by 谷歌翻译
模型预测控制(MPC)越来越多地考虑控制快速系统和嵌入式应用。然而,MPC对这种系统具有一些重大挑战。其高计算复杂性导致来自控制算法的高功耗,这可能考虑电池供电嵌入式系统中的能量资源的大量份额。必须调整MPC参数,这主要是一个试验和错误过程,这些过程会影响控制器的控制性能,鲁棒性和计算复杂度高度。在本文中,我们提出了一种新颖的框架,其中可以使用加强学习(RL)共同调整控制算法的任何参数,其目的是同时优化控制算法的控制性能和功率使用。我们提出了优化MPCWith RL的元参数的新颖思想,即影响MPCPROBLAB的结构的参数,而不是给定个问题的解决方案。我们的控制算法基于事件触发的MPC,在那里我们学习当应该重新计算MPC时,以及在MPC计算之间应用的双模MPC和线性状态反馈控制法。我们制定了一种新的混合分配政策,并表明,随着联合优化,我们在孤立地优化相同参数时,无法呈现自己的改进。我们展示了我们对倒立摆控制任务的框架,将控制系统的总计算时间减少了36%,同时还通过最佳性能的MPC基线提高了18.4%的控制性能。
translated by 谷歌翻译
In contact-rich tasks, like dexterous manipulation, the hybrid nature of making and breaking contact creates challenges for model representation and control. For example, choosing and sequencing contact locations for in-hand manipulation, where there are thousands of potential hybrid modes, is not generally tractable. In this paper, we are inspired by the observation that far fewer modes are actually necessary to accomplish many tasks. Building on our prior work learning hybrid models, represented as linear complementarity systems, we find a reduced-order hybrid model requiring only a limited number of task-relevant modes. This simplified representation, in combination with model predictive control, enables real-time control yet is sufficient for achieving high performance. We demonstrate the proposed method first on synthetic hybrid systems, reducing the mode count by multiple orders of magnitude while achieving task performance loss of less than 5%. We also apply the proposed method to a three-fingered robotic hand manipulating a previously unknown object. With no prior knowledge, we achieve state-of-the-art closed-loop performance in less than five minutes of online learning.
translated by 谷歌翻译
This work is concerned with solving neural network-based feedback controllers efficiently for optimal control problems. We first conduct a comparative study of two mainstream approaches: offline supervised learning and online direct policy optimization. Albeit the training part of the supervised learning approach is relatively easy, the success of the method heavily depends on the optimal control dataset generated by open-loop optimal control solvers. In contrast, direct optimization turns the optimal control problem into an optimization problem directly without any requirement of pre-computing, but the dynamics-related objective can be hard to optimize when the problem is complicated. Our results highlight the priority of offline supervised learning in terms of both optimality and training time. To overcome the main challenges, dataset, and optimization, in the two approaches respectively, we complement them and propose the Pre-train and Fine-tune strategy as a unified training paradigm for optimal feedback control, which further improves the performance and robustness significantly. Our code is available at https://github.com/yzhao98/DeepOptimalControl.
translated by 谷歌翻译
在过去的十年中,由于分散控制应用程序的趋势和网络物理系统应用的出现,网络控制系统在过去十年中引起了广泛的关注。但是,由于无线网络的复杂性质,现实世界中无线网络控制系统的通信带宽,可靠性问题以及对网络动态的认识不足。将机器学习和事件触发的控制结合起来有可能减轻其中一些问题。例如,可以使用机器学习来克服缺乏网络模型的问题,通过学习系统行为或通过不断学习模型动态来适应动态变化的模型。事件触发的控制可以通过仅在必要时或可用资源时传输控制信息来帮助保护通信带宽。本文的目的是对有关机器学习的使用与事件触发的控制的使用进行综述。机器学习技术,例如统计学习,神经网络和基于强化的学习方法,例如深入强化学习,并结合事件触发的控制。我们讨论如何根据机器学习使用的目的将这些学习算法用于不同的应用程序。在对文献的审查和讨论之后,我们重点介绍了与基于机器学习的事件触发的控制并提出潜在解决方案相关的开放研究问题和挑战。
translated by 谷歌翻译
这项工作介绍了模型预测控制(MPC)的公式,该公式适应基于任务的模型的复杂性,同时保持可行性和稳定性保证。现有的MPC实现通常通过缩短预测范围或简化模型来处理计算复杂性,这两者都可能导致不稳定。受到行为经济学,运动计划和生物力学相关方法的启发,我们的方法通过简单模型解决了MPC问题,用于在地平线区域的动力学和约束,而这种模型是可行的,并且不存在该模型的复杂模型。该方法利用计划和执行的交织来迭代识别这些区域,如果它们满足确切的模板/锚关系,可以安全地简化这些区域。我们表明,该方法不会损害系统的稳定性和可行性特性,并在仿真实验中衡量在四足动物上执行敏捷行为的仿真实验中的性能。我们发现,与固定复杂性实现相比,这种自适应方法可以实现更多的敏捷运动,并扩大可执行任务的范围。
translated by 谷歌翻译