本文介绍了一种名为Polytrack的新方法,用于使用边界多边形的快速多目标跟踪和分段。PolyTrack通过产生其中心键盘的热插拔来检测物体。对于它们中的每一个,通过在每个实例上计算限定多边形而不是传统边界框来完成粗略分割。通过将两个连续帧作为输入来完成跟踪,并计算在第一帧中检测到的每个对象的中心偏移,以预测其在第二帧中的位置。还应用了卡尔曼滤波器以减少ID交换机的数量。由于我们的目标应用程序是自动化驾驶系统,因此我们在城市环境视频上应用了方法。我们在MOTS和Kittimots数据集上培训和评估多轨。结果表明,跟踪多边形可以是边界框和掩模跟踪的良好替代品。Polytrack代码可在https://github.com/gafaua/polytrack上获得。
translated by 谷歌翻译
Tracking has traditionally been the art of following interest points through space and time. This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by pipelines that perform object detection followed by temporal association, also known as tracking-by-detection. We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art. Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame. Given this minimal input, CenterTrack localizes objects and predicts their associations with the previous frame. That's it. CenterTrack is simple, online (no peeking into the future), and real-time. It achieves 67.8% MOTA on the MOT17 challenge at 22 FPS and 89.4% MOTA on the KITTI tracking benchmark at 15 FPS, setting a new state of the art on both datasets. CenterTrack is easily extended to monocular 3D tracking by regressing additional 3D attributes. Using monocular video input, it achieves 28.3% AMOTA@0.2 on the newly released nuScenes 3D tracking benchmark, substantially outperforming the monocular baseline on this benchmark while running at 28 FPS.
translated by 谷歌翻译
在统一框架中为检测和跟踪建模的时间信息已被证明是视频实例分割(VIS)的有希望的解决方案。但是,如何有效地将时间信息纳入在线模型仍然是一个空旷的问题。在这项工作中,我们提出了一个名为Inspeacity(IAI)的新的在线Vis范式,该范式以有效的方式对检测和跟踪进行建模。详细说明,IAI采用了一个新颖的识别模块来明确预测跟踪实例的标识号。为了传递时间信息跨框架,IAI使用了结合当前特征和过去嵌入的关联模块。值得注意的是,IAI可以与不同的图像模型集成。我们对三个VIS基准进行了广泛的实验。 IAI在YouTube-VIS-2019(Resnet-101 41.9地图)和YouTube-VIS-2021(Resnet-50 37.7地图)上胜过所有在线竞争对手。令人惊讶的是,在更具挑战性的OVI上,IAI实现了SOTA性能(20.3地图)。代码可从https://github.com/zfonemore/iai获得
translated by 谷歌翻译
In this paper we present a new computer vision task, named video instance segmentation. The goal of this new task is simultaneous detection, segmentation and tracking of instances in videos. In words, it is the first time that the image instance segmentation problem is extended to the video domain. To facilitate research on this new task, we propose a large-scale benchmark called YouTube-VIS, which consists of 2,883 high-resolution YouTube videos, a 40-category label set and 131k high-quality instance masks.In addition, we propose a novel algorithm called Mask-Track R-CNN for this task. Our new method introduces a new tracking branch to Mask R-CNN to jointly perform the detection, segmentation and tracking tasks simultaneously. Finally, we evaluate the proposed method and several strong baselines on our new dataset. Experimental results clearly demonstrate the advantages of the proposed algorithm and reveal insight for future improvement. We believe the video instance segmentation task will motivate the community along the line of research for video understanding.
translated by 谷歌翻译
Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-theart performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, Center-Point outperforms all previous single model methods by a large margin and ranks first among all Lidar-only submissions. The code and pretrained models are available at https://github.com/tianweiy/CenterPoint.
translated by 谷歌翻译
为视频中的每个像素分配语义类和跟踪身份的任务称为视频Panoptic分段。我们的工作是第一个在真实世界中瞄准这项任务,需要在空间和时间域中的密集解释。由于此任务的地面真理难以获得,但是,现有数据集是合成构造的或仅在短视频剪辑中稀疏地注释。为了克服这一点,我们介绍了一个包含两个数据集,Kitti-Step和Motchallenge步骤的新基准。数据集包含长视频序列,提供具有挑战性的示例和用于研究长期像素精确分割和在真实条件下跟踪的测试床。我们进一步提出了一种新的评估度量分割和跟踪质量(STQ),其相当余额平衡该任务的语义和跟踪方面,并且更适合评估任意长度的序列。最后,我们提供了几个基线来评估此新具有挑战性数据集的现有方法的状态。我们已将我们的数据集,公制,基准服务器和基准公开提供,并希望这将激发未来的研究。
translated by 谷歌翻译
在本文中,我们介绍了Siammask,这是一个实时使用相同简单方法实时执行视觉对象跟踪和视频对象分割的框架。我们通过通过二进制细分任务来增强其损失,从而改善了流行的全面暹罗方法的离线培训程序。离线训练完成后,SiamMask只需要一个单个边界框来初始化,并且可以同时在高框架速率下进行视觉对象跟踪和分割。此外,我们表明可以通过简单地以级联的方式重新使用多任务模型来扩展框架以处理多个对象跟踪和细分。实验结果表明,我们的方法具有较高的处理效率,每秒约55帧。它可以在视觉对象跟踪基准测试中产生实时最新结果,同时以高速进行视频对象分割基准测试以高速显示竞争性能。
translated by 谷歌翻译
分割高度重叠的图像对象是具有挑战性的,因为图像上的真实对象轮廓和遮挡边界之间通常没有区别。与先前的实例分割方法不同,我们将图像形成模拟为两个重叠层的组成,并提出了双层卷积网络(BCNET),其中顶层检测到遮挡对象(遮挡器),而底层则渗透到部分闭塞实例(胶囊)。遮挡关系与双层结构的显式建模自然地将遮挡和遮挡实例的边界解散,并在掩模回归过程中考虑了它们之间的相互作用。我们使用两种流行的卷积网络设计(即完全卷积网络(FCN)和图形卷积网络(GCN))研究了双层结构的功效。此外,我们通过将图像中的实例表示为单独的可学习封闭器和封闭者查询,从而使用视觉变压器(VIT)制定双层解耦。使用一个/两个阶段和基于查询的对象探测器具有各种骨架和网络层选择验证双层解耦合的概括能力,如图像实例分段基准(可可,亲戚,可可)和视频所示实例分割基准(YTVIS,OVIS,BDD100K MOTS),特别是对于重闭塞病例。代码和数据可在https://github.com/lkeab/bcnet上找到。
translated by 谷歌翻译
多目标跟踪(MOT)的典型管道是使用探测器进行对象本地化,并在重新识别(RE-ID)之后进行对象关联。该管道通过对象检测和重新ID的最近进展部分而部分地激励,并且部分地通过现有的跟踪数据集中的偏差激励,其中大多数物体倾向于具有区分外观和RE-ID模型足以建立关联。为了响应这种偏见,我们希望重新强调多目标跟踪的方法也应该在对象外观不充分辨别时起作用。为此,我们提出了一个大型数据集,用于多人跟踪,人类具有相似的外观,多样化的运动和极端关节。由于数据集包含主要组跳舞视频,我们将其命名为“DanceTrack”。我们预计DanceTrack可以提供更好的平台,以开发更多的MOT算法,这些算法依赖于视觉识别并更依赖于运动分析。在我们的数据集上,我们在数据集上基准测试了几个最先进的追踪器,并在与现有基准测试中遵守DanceTrack的显着性能下降。 DataSet,项目代码和竞争服务器播放:\ url {https://github.com/danceTrack}。
translated by 谷歌翻译
水果和蔬菜的检测,分割和跟踪是精确农业的三个基本任务,实现了机器人的收获和产量估计。但是,现代算法是饥饿的数据,并非总是有可能收集足够的数据来运用最佳性能的监督方法。由于数据收集是一项昂贵且繁琐的任务,因此在农业中使用计算机视觉的能力通常是小企业无法实现的。在此背景下的先前工作之后,我们提出了一种初始弱监督的解决方案,以减少在精确农业应用程序中获得最新检测和细分所需的数据,在这里,我们在这里改进该系统并探索跟踪果实的问题果园。我们介绍了拉齐奥南部(意大利)葡萄的葡萄园案例,因为葡萄由于遮挡,颜色和一般照明条件而难以分割。当有一些可以用作源数据的初始标记数据(例如,葡萄酒葡萄数据)时,我们会考虑这种情况,但与目标数据有很大不同(例如表格葡萄数据)。为了改善目标数据的检测和分割,我们建议使用弱边界框标签训练分割算法,而对于跟踪,我们从运动算法中利用3D结构来生成来自已标记样品的新标签。最后,将两个系统组合成完整的半监督方法。与SOTA监督解决方案的比较表明,我们的方法如何能够训练以很少的标记图像和非常简单的标签来实现高性能的新型号。
translated by 谷歌翻译
对象运动和对象外观是多个对象跟踪(MOT)应用中的常用信息,用于将帧跨越帧的检测相关联,或用于联合检测和跟踪方法的直接跟踪预测。然而,不仅是这两种类型的信息通常是单独考虑的,而且它们也没有帮助直接从当前感兴趣帧中使用视觉信息的用法。在本文中,我们提出了PatchTrack,一种基于变压器的联合检测和跟踪系统,其使用当前感兴趣的帧帧的曲线预测曲目。我们使用卡尔曼滤波器从前一帧预测当前帧中的现有轨道的位置。从预测边界框裁剪的补丁被发送到变压器解码器以推断新曲目。通过利用在补丁中编码的对象运动和对象外观信息,所提出的方法将更多地关注新曲目更有可能发生的位置。我们展示了近期MOT基准的Patchtrack的有效性,包括MOT16(MOTA 73.71%,IDF1 65.77%)和MOT17(MOTA 73.59%,IDF1 65.23%)。结果在https://motchallenge.net/method/mot=4725&chl=10上发布。
translated by 谷歌翻译
近年来,多个对象跟踪引起了研究人员的极大兴趣,它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小物体检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的注意力机制,与田径的相互关系,与田径的相互关系,图形卷积神经网络,与暹罗网络不同帧中对象的外观相似性,他们还尝试了基于IOU匹配的CNN网络,使用LSTM的运动预测。为了将这些零散的技术在雨伞下采用,我们研究了过去三年发表的一百多篇论文,并试图提取近代研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。
translated by 谷歌翻译
Determining accurate bird's eye view (BEV) positions of objects and tracks in a scene is vital for various perception tasks including object interactions mapping, scenario extraction etc., however, the level of supervision required to accomplish that is extremely challenging to procure. We propose a light-weight, weakly supervised method to estimate 3D position of objects by jointly learning to regress the 2D object detections and scene's depth prediction in a single feed-forward pass of a network. Our proposed method extends a center-point based single-shot object detector \cite{zhou2019objects}, and introduces a novel object representation where each object is modeled as a BEV point spatio-temporally, without the need of any 3D or BEV annotations for training and LiDAR data at query time. The approach leverages readily available 2D object supervision along with LiDAR point clouds (used only during training) to jointly train a single network, that learns to predict 2D object detection alongside the whole scene's depth, to spatio-temporally model object tracks as points in BEV. The proposed method is computationally over $\sim$10x efficient compared to recent SOTA approaches [1, 38] while achieving comparable accuracies on KITTI tracking benchmark.
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译
我们的视频是否可以在场景中存在沉重的遮挡时感知对象?为了回答这个问题,我们收集一个名为OVIS的大型数据集,用于遮挡视频实例分段,即同时检测,段和跟踪遮挡场景中的实例。 OVIS由25个语义类别的296K高质量的掩码组成,通常发生对象遮挡。虽然我们的人类视觉系统可以通过语境推理和关联来理解那些被遮挡的情况,但我们的实验表明当前的视频理解系统不能。在ovis数据集上,最先进的算法实现的最高AP仅为16.3,这揭示了我们仍然处于创建对象,实例和视频中的新生阶段。我们还提出了一个简单的即插即用模块,执行时间特征校准,以补充闭塞引起的缺失对象线索。基于MaskTrack R-CNN和SIPMASK构建,我们在OVIS数据集中获得了显着的AP改进。 ovis数据集和项目代码可在http://songbai.site/ovis获得。
translated by 谷歌翻译
本文旨在解决多个对象跟踪(MOT),这是计算机视觉中的一个重要问题,但由于许多实际问题,尤其是阻塞,因此仍然具有挑战性。确实,我们提出了一种新的实时深度透视图 - 了解多个对象跟踪(DP-MOT)方法,以解决MOT中的闭塞问题。首先提出了一个简单但有效的主题深度估计(SODE),以在2D场景中自动以无监督的方式自动订购检测到的受试者的深度位置。使用SODE的输出,提出了一个新的活动伪3D KALMAN滤波器,即具有动态控制变量的Kalman滤波器的简单但有效的扩展,以动态更新对象的运动。此外,在数据关联步骤中提出了一种新的高阶关联方法,以合并检测到的对象之间的一阶和二阶关系。与标准MOT基准的最新MOT方法相比,提出的方法始终达到最先进的性能。
translated by 谷歌翻译
在监控和搜索和救援应用程序中,重要的是在低端设备上实时执行多目标跟踪(MOT)。今天的MOT解决方案采用深度神经网络,往往具有高计算复杂性。识别帧大小对跟踪性能的影响,我们提出了深度,一种模型不可知框架尺寸选择方法,可在现有的全卷积网络基跟踪器之上进行操作,以加速跟踪吞吐量。在培训阶段,我们将可检测性分数纳入单次跟踪器架构,使得DeepScale以自我监督的方式学习不同帧大小的表示估计。在推理期间,它可以根据基于用户控制参数根据视觉内容的复杂性来调整帧大小。为了利用边缘服务器上的计算资源,我们提出了两个计算分区模式,即仅使用自适应帧大小传输和边缘服务器辅助跟踪仅适用于MOT,即边缘服务器。 MOT数据集的广泛实验和基准测试证明了深度的有效性和灵活性。与最先进的追踪器相比,DeepScale ++,DeepScale的变种实现1.57倍加速,仅在一个配置中的MOT15数据集上跟踪准确性。我们已经实现和评估了DeepScale ++,以及由NVIDIA JETSON TX2板和GPU服务器组成的小型测试平台上所提出的计算分区方案。实验显示与仅服务器或智能相机的解决方案相比跟踪性能和延迟之间的非琐碎权衡。
translated by 谷歌翻译
本文介绍了Houghnet,这是一种单阶段,无锚,基于投票的,自下而上的对象检测方法。受到广义的霍夫变换的启发,霍尼特通过在该位置投票的总和确定了某个位置的物体的存在。投票是根据对数极极投票领域的近距离和长距离地点收集的。由于这种投票机制,Houghnet能够整合近距离和远程的班级条件证据以进行视觉识别,从而概括和增强当前的对象检测方法,这通常仅依赖于本地证据。在可可数据集中,Houghnet的最佳型号达到$ 46.4 $ $ $ ap $(和$ 65.1 $ $ $ ap_ {50} $),与自下而上的对象检测中的最先进的作品相同,超越了最重要的一项 - 阶段和两阶段方法。我们进一步验证了提案在其他视觉检测任务中的有效性,即视频对象检测,实例分割,3D对象检测和人为姿势估计的关键点检测以及其他“图像”图像生成任务的附加“标签”,其中集成的集成在所有情况下,我们的投票模块始终提高性能。代码可在https://github.com/nerminsamet/houghnet上找到。
translated by 谷歌翻译
In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task. Once trained, SiamMask solely relies on a single bounding box initialisation and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second. Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state of the art among real-time trackers on VOT-2018, while at the same time demonstrating competitive performance and the best speed for the semisupervised video object segmentation task on DAVIS-2016 and DAVIS-2017. The project website is http://www. robots.ox.ac.uk/ ˜qwang/SiamMask.
translated by 谷歌翻译
检测和避免(DAA)功能对于无人飞机系统(UAS)的安全操作至关重要。本文介绍了Airtrack,这是一个仅实时视觉检测和跟踪框架,尊重SUAS系统的大小,重量和功率(交换)约束。鉴于遥远飞机的低信噪比(SNR),我们建议在深度学习框架中使用完整的分辨率图像,以对齐连续的图像以消除自我动态。然后,对齐的图像在级联的初级和次级分类器中下游使用,以改善多个指标的检测和跟踪性能。我们表明,Airtrack在亚马逊机载对象跟踪(AOT)数据集上胜过最先进的基线。多次现实世界的飞行测试与CESSNA 172与通用航空交通相互作用,并在受控的设置中朝着UAS飞向UAS的其他近碰撞飞行测试,该拟议方法满足了新引入的ASTM F3442/F3442M标准DAA标准。经验评估表明,我们的系统的概率超过900m,范围超过95%。视频可在https://youtu.be/h3ll_wjxjpw上找到。
translated by 谷歌翻译